

UNIVERSITY OF 800 YEARS CAMBRIDGE 1209-2009

Institute for Aviation and the Environment

Using the Aviation Integrated Model for Policy Assessment

Presenter: Tom G. Reynolds

Based on work by: Lynnette Dray, Antony Evans, Tom Reynolds, Helen Rogers, Andreas Schäfer, María Vera-Morales

Institute for Aviation and the Environment, University of Cambridge

UC Davis Revolution in Aviation Symposium, Palm Springs, CA, 2nd March 2009

Presentation Outline

- 1. Need for Policy Assessment Tools
- 2. Importance of System Interdependencies
- 3. Aviation Integrated Modelling (AIM) Tool
- 4. Using AIM for Policy Assessment
 - Emissions Trading Scheme (ETS)
 - Noise Regulation

Need for Policy Assessment Tools

- Air transport system is large, complex and multi-disciplinary involving numerous stakeholders with different agendas
- Range of future trends
 - Developing regions (India, China,...)
 - Developing sectors (VLJ, SSBJ,...)
 - Developing technologies
- Increasing environmental pressures

 Need for tools to analyse interdependencies & trade-offs to assist policymakers

Importance of Interdependencies

• Environmental challenges must be set into context of multiple system interdependencies, e.g. between

Importance of Interdependencies

• Environmental challenges must be set into context of multiple system interdependencies, e.g. between

Importance of Interdependencies

• Environmental challenges must be set into context of multiple system interdependencies, e.g. between

6 © University of Cambridge, 2009

Aviation Integrated Modelling Policy Assessment Tool

© University of Cambridge, 2009

and the Environment

Looking for "Win-Wins"

	Mitigation	Environmental Impact			Relative	Time-	Sphere
	Strategy	Noise	Air Quality	Global Climate	Economic Impact	frame	of Influence
Technology	Source shielding	+	-	-	\$ cost	Short	Existing a/c
	Retrofits e.g. winglets, shields	Neutral	Neutral	+	<pre>\$ setup cost \$\$ fuel benefit</pre>	Short	Existing a/c
	Alternative fuels	Neutral	+	++	\$\$ cost	Med	System
	All-new designs	++	++	++	<pre>\$\$\$ setup cost \$\$ fuel benefit</pre>	Long	New a/c
Operations	CDA	+	+	+	\$ fuel benefit	Short	Airport
	De-rated thrust	+	+/-	Neutral	<pre>\$ maint benefit \$ fuel cost</pre>	Short	Aircraft
	Steep approach	+	+	Neutral	\$ cost	Med	Airport
	ATM efficiency	+	+	+	\$\$ setup cost \$ fuel benefit	Med	System

Institute for Aviation and the Environment

Promoting Non-Voluntary Change: Regulation & Market-Based Measures

	Noise	Air Quality	Global Climate	
Regulation	 Stricter certifications standards Local airport standards (e.g. quota counts) 	 Stricter certifications standards Local / regional / national / international standards 	 Future fuel burn standards? 	
Market-Based Measures	 Noise charges 	 Emissions charges 	 Emissions trading schemes 	

Importance of Even Wider Interdependencies

• ETS forces assessment of aviation in context of even wider system interdependencies...

10 © University of Cambridge, 2009

Emissions Trading Scheme (ETS) Basics

- Economic incentives for achieving reduction in pollutant emissions (aka "cap and trade") by:
 - Setting a cap on total amount of a pollutant allowed in a given period
 - Sectors given permits allowing emissions to a certain level given cap
 - Sectors emitting more than allowed buy credits from those who emit less, i.e. trading of permits from sectors that can easily reduce emissions to sectors that cannot
- Aviation to be included in European Union ETS from 2012

Using AIM to Assess ETS Impacts

- Reference scenario
 - No environmental policies affecting costs
 - Airport capacity increases to maintain 2005 delays
- ETS scenario
 - Exogenous carbon price from open (all sectors) global ETS to meet standard GHG stabilization targets
 - Carbon price affects airline operating costs, fares, and thus passenger demand, air traffic and emissions growth
 - With/without uplift factors for "non-CO₂" effects
 - Values of 1.9 and 2.7 have been proposed

Assumptions

- Population, GDP/cap, oil price and carbon price from US Climate Change Science Program study
 - MIT "Integrated Systems Model" (IGSM)
 - Stanford "Model for Evaluating Regional & Global Effects of GHG Reduction Policies" (MERGE)
 - Pacific Northwest Laboratory "Mini Climate Change Assessment Model" (MiniCAM)

	GDP growth	Oil Price	Carbon Price	
IGSM	High	High	High	
MERGE	Low	Medium	Medium	
MiniCAM	Initially low, increasing	Low	Low	

Global carbon price for CO₂ atmospheric stabilization targets of 450 - 750 ppm

Assumptions

- Aircraft Technology and Cost Module
 - 3 size categories, Operating costs (excl. fuel) remain constant
 - New technology introduced using fleet turnover model, Fuel burn reduction by 1, 1.5 or 2%/year depending on fuel price
- Air Transport Demand Module
 - Gravity-type model

$$D_{ij} = (I_i I_j)^{\alpha} (P_i P_j)^{\gamma} e^{\delta A_{ij}} e^{\varepsilon B_{ij}} e^{\varphi S_{ij}} C_{ij}^{-\tau}$$

- Elasticities calibrated from DOT database
- Future fares modelled using airline competition model (marginal cost)
- Airport Activity Module
 - Current capacities from FAA database
 - Capacity growth to maintain 2005 arrival delay levels
 - Load factors & routing network remain constant

Reference Scenario Results

15 © University of Cambridge, 2009

Reference Scenario Results

- PK demand in 2050 2-4x current
- Differences arise mainly from GDP growth scenarios
- uel use & CO₂ emissions increase at progressively lower ite over time due to fuel burn improvement of new aircraft
- apacity requirements in 2050 up to 1.8x current on average
- Individual airports can need much higher (ORD: 2.7x current)
- Network evolution needs to be modelled
- verage air fare roughly level trend due to balance between creasing oil prices and decreasing fuel burn/RPK
- Past decreases due to competition

ETS Scenario Results

ETS Scenario Results

- TS significantly reduces growth in RPK, fuel use, O_2 emissions & required extra airport capacity
- 450 ppm target: reductions of up to 50% in 2050 levels
- Additional 2.7 uplift factor for non-CO₂ effects reduces 2050 levels almost to base year levels
- aried model responses due to widely differing arbon and oil price assumptions
- By 2050, IGSM oil plus carbon price is \$250/bbl, 30% of the extra costs passed to ticket price
- Equivalent MiniCAM model price is \$140/bbl, and only 8% of costs are passed on
- Price effects very different for long haul vs. short haul

Using AIM for Noise Regulation

Summary

- onsideration of system interdependencies critical modelling aviation environmental impacts
- ntegrated models are needed to support policynaking activities
- pplication of AIM model to policy options
- lore details on AIM and ETS analysis paper from: www.AlMproject.aero