Systems Aspects of Electric Commercial Aircraft (SAECA)

Hybrid-electric and Electric Aircraft – Researching the Challenges to Introduction

Woburn House, London, 30 May 2017

Andreas W. Schäfer
Air Transportation Systems Laboratory
University College London
(a.schafer@ucl.ac.uk)
SAECA Team

- Prof. Steven R.H. Barrett (MIT)
- Dr. Lynnette Dray (UCL)
- Dr. Khan Doyme (UCL)
- Roger Gardner (U. Southampton)
- Mr. Albert Gnadt (MIT)
- Dr. Chez Hall (U. Cambridge)
- Mr. Weibo Li (UCL)
- Mr. Marius Macys (UCL)
- Dr. Antonio Martinez (U. Southampton)
- Prof. Andreas W. Schäfer (UCL)
- Prof. Rod Self (U. Southampton)
- Ms. Vanessa Schröder (ETH Zurich)
- Dr. Aidan O’Sullivan (UCL)
- Mr. Bojun Wang (UCL)
- Mr. Kinan Al’Zayat (UCL)

In collaboration with:
Electric Aircraft Ecosystem

- Emissions (lifecycle perspective)
- Aircraft noise
- Fleet adoption
- Flight network
- Business models
- Airline competition
- Industrial competitiveness
Focus on Narrowbody Aircraft

UK Departures in 2015

Narrow Bodies (SA Classes 3-5)

1,667 km (900 nm)

SA: Sustainable Aviation
Electric Aircraft Characteristics (MIT)

• **Transport Aircraft System OPTimization – electric (TASOPTe)**
 • Simultaneous optimization of airframe, propulsor, operations for given mission
 • Uses first-principles methods

• **Design Constraints**
 • Takeoff length limited to 2.4 km (8,000 ft)
 • 4.5° climb angle; top-of-climb gradient \(\geq 1.5\% \)
 • Battery specific energy: 1,500 Wh/kg, 20% reserve
 • A320 geometry; 2-6 propulsors
 • Design range: 900 nm (1,667 km)

• **Additional Inputs**
 • Cruise Mach number/altitude
 • Allowable material stresses
 • Non-structural weight fractions
 • Basic aircraft dimensions
Electric Aircraft Characteristics (MIT)

- Outputs
 - Optimized aircraft design
 - Component weights
 - Propulsor dimensions
 - Mission energy use
 - Complete flight profile & performance

Avg. power requirement: 20 MW
Avg. energy intensity: 177 Wh/RPK (0.64 MJ_{el}/RPK)
Noise Study (Southampton)

- Determine community noise contours of A320el vs. A320neo
- Parametric study to evaluate noise vs.
 - Number of propulsors
 - Battery energy density
 - Battery charging strategies
 - Mission length
- Conclusions
 - Noise benefits could be substantial on short missions
 - Noise highly dependent on all operational constraints and procedures, i.e., flight profiles and recharging strategies
 - Approach noise can be higher than conventional A/C and is subject to less variation with other parameters
 - Directivity effects may be significant

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>Noise Contour Area (84dB(A)-SEL)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>A320-232</td>
<td>7.4 km² (+102%)</td>
</tr>
<tr>
<td>A320neo</td>
<td>3.7 km²</td>
</tr>
<tr>
<td>e-A320</td>
<td>2.8 km² (-23%)</td>
</tr>
</tbody>
</table>

* Relative to A320neo
Operations Study (UCL)

• UK electric grid implications
 • Electrifying 80% of SA Classes 3-5 (440,000 electric aircraft departures) requires an additional 12 TWh (~ 4% of UK total): equivalent to 1,000 – 1,500 wind turbines (@ 3 MW each)
 • Daily departure profile and electricity load similar: opportunities for load levelling through night charging

• 2015 CO₂ emissions intensity based on UK grid: stage length = 830 km
 • \(332 \text{ gCO}_2/\text{kWh}_{\text{el}} \times 0.18 \text{ kWh}_{\text{el}}/\text{RPK} \approx 73.3 \text{ gCO}_2/\text{MJ} \times 0.9 \text{ MJ/RPK}

\[
\begin{align*}
60 \text{ gCO}_2/\text{RPK} \; \text{(BEA)} & \quad & 66 \text{ gCO}_2/\text{RPK} \; \text{(A320NEO)}
\end{align*}
\]
 • However, gCO₂/kWh_{el} projected to decline strongly in future

• Turnaround strategies
Turnaround / Battery Management Strategies

830 km Trip Length (22 MWh)

- 46 MWh
- 32% charge
- 40 min
- 80% charge
- 51% charge
- 25 min
- 32% charge
- Etc.

1,260 km Trip Length (30 MWh)

- 46 MWh
- 24% charge
- 40 min
- 35% charge
- 90% charge
- 25 min
- 35% charge
- or:

- 60 min
- < 40 min

20% reserve battery charge required
Direct Operating Cost Study (UCL)

• Estimate DOC of battery electric aircraft
• Electrification affects 75% of DOC (capital costs, maintenance, energy, en-route / airport charges)
• Cost-effectiveness depends mainly on battery performance and costs, jet fuel and electricity price → feasible economic window seems to exist
Fleet Impacts of Battery Electric Aircraft

Open Source Aviation Integrated Model

Aircraft Technology & Cost

Aircraft Movement

Aircraft Movement

Global Climate

Global Environment Impacts

Local Environment Impacts

Local/National Economic Impacts

Air Transport Demand

Airline & Airport Activity

Air Quality & Noise

Regional Economics

Air Transport Demand

Aircraft Technology & Cost

Open Source Aviation Integrated Model

www.ATSlab.org
• Sample model inputs, starting from IPCC AR5 scenarios
• These runs assume:
 - Mid-range values (SSP1-3)
 - No carbon price
 - 3%/year decrease in future carbon intensity of electricity generation
 - Electricity price tends to $0.05/kWh by 2100, all countries

[Data: IEA, 2017; IPCC, 2015; DECC, 2015]
Projected Electric Aircraft Network (2050)
Electric Aircraft “Grand Challenge”

• Key “Systems” Questions
 • Fundamental technology requirements for different markets
 • Optimum deployment under airline competition → network impacts
 • Early markets for BEA / HEA adoption → new business models?
 • Impact on airport operations (incl. capacity), electric grid, and transportation system
 • Impact on airline and airport economics
 • Lifecycle emissions and noise

• Key Enabling Studies
 • Key performance parameters of optimized BEA / HEA
 • Optimized BEA / HEA noise assessment
 • Optimized BEA direct operating costs
 • Optimized battery management & airport / grid infrastructure

• Systems model required to account for interdependencies
Example: Noise Research in Detail

• Baseline Aircraft Noise Sources: Investigate and model any novel sources: e.g. BL ingestion, novel airframe and DP installation effects

• Baseline Aircraft NPD Curves
 • Determine baseline NPD curves – likely to involve understanding how to deal with fully 3-d noise emissions as current lateral directivity procedures will be inadequate
 • Determine scaling laws for aircraft noise source levels with both technology and operation changes (e.g., mass changes due to energy density, discharge levels => noise changes)
 • Extend tool for determining variation in NPDs due to aircraft and operational changes to allow for parametric studies

• Extension of Airport Noise Tool: Extend current contour noise tool to allow for novel directivity and lateral attenuation characteristics

• Public Acceptability
 • Operational characteristics and noise signatures will differ markedly from conventional aircraft
 • Better understand human response to EA noise and develop metrics for assessing noise impact
Nota bene: Transitions can materialize very quickly

US Steam to Diesel-electric Locomotive Transition

Winners

Losers

Source: Schäfer and Sweeney (2016)