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1. Introduction 
 
The Aviation Integrated Model (AIM) is a global aviation systems model which simulates 
interactions between passengers, airlines, airports and other system actors into the future, 
with the goal of providing insight into how policy levers and other projected system changes 
will affect aviation’s externalities and economic impacts. The model was originally developed 
in 2006-2009 with UK research council funding (e.g. Reynolds et al., 2007). Subsequently it 
was used in a variety of EC Framework 7 projects, including TOSCA, Team_play and MetaCDM 
(e.g. Dray et al. 2012).  

More recently it has been substantially updated as part of the ACCLAIM project (2015-2018) 
between University College London, Imperial College and Southampton University. The 
ultimate aim of the ACCLAIM project is to produce a tool which can assess the local and 
system-wide impacts of adding capacity at constrained airports, with a particular focus on the 
current challenges facing the London airport system. AIM2015 is related to, but separate 
from, the airline behaviour model developed by the ACCLAIM project (e.g. Doyme et al., 2019; 
Evans and Schäfer, 2014)1. AIM2015 does not include detailed airline profit optimisation, but 
does include a number of substantial updates on previous versions of the model, including a 
2015 base year, passenger itinerary choice and fare modelling, more detailed fleet 
representation and integrated externalities modules. Run time has also been substantially 
reduced: a single model run now takes approximately forty minutes – three hours, depending 
on the input parameters. The model is open-source; this document is intended to be 
distributed with the model code. 

This version of the documentation is intended to accompany v92 of the main AIM code. 
Changes in v9 over v8 include:  

• Updated OD demand, itinerary choice and fare models, 
• Aircraft performance model estimates flight time by phase as well as emissions, 
• New PM model, based on FOX methodology (Stettler et al. 2013), 
• Estimation of NO2 as well as NOx totals, 
• Integration of a climate impacts metamodel, 
• Integration of rapid dispersion code (RDC, Barrett & Britter 2008) to calculate the 

distribution of primary PM and NO2 from aircraft engines around airports,  
• Integration of single-metric noise calculations (SINE, LkAeq and quota count), 
• Inclusion of electric aircraft as a technology option, with extension of the technology 

input data, and 

                                                        
1 The airline behaviour model (ABM) is an optimisation model which simulates airline profit maximisation, and 
so can be used to assess system impacts from competition-related phenomena (for example, cost pass-
through and scarcity rents at congested airports). Due to the increased complexity and model runtime 
inherent in simulating competition, the airline behaviour model is more suitable for assessing detailed regional 
impacts of system changes in a single near-future year, and AIM2015 is more suitable for projecting long-term 
global impacts. 
2 The version number is updated each time there is a major addition to the codebase. Versions 1-6 
corresponded to the original 2006-2009 development of the AIM. Version 7 was the initial code and base year 
update for the ACCLAIM project; version 8 introduced further improvements in cost, performance and 
technology modelling.  



• The availability of input data files which do not contain confidential data. 

 

 
Figure 1. AIM 2015, broad structure. 

The basic structure of AIM is shown in Figure 1. AIM consists of seven interconnected 
modules. The demand module projects true origin-ultimate destination demand between a 
set of cities representing approximately 95% of global scheduled revenue passenger-
kilometres (RPK), and assesses which of the available routes they will use to take these 
journeys. Fares are simulated using a fare model and based on airline costs and other factors. 
The airline and airport activity module assesses which aircraft will be used to fly these routes 
and at what frequency, what the resulting airport-level movements are and how this 
translates into delay at each airport. The aircraft movement module assesses the 
corresponding airborne routes and the consequent location of emissions. The aircraft 
technology and cost module assesses the size, composition, age and technology use of the 
aircraft fleet, and the resulting costs for airlines and emissions implications. These four 
modules are run iteratively until a stable solution is reached. Data is then output which can 
be used in the impacts modules, shown on the right of Figure 1. The global climate module is 
a rapid, reduced-form climate model which calculates the resulting climate metrics (e.g. CO2e 
in terms of global temperature potential (GTP) and global warming potential (GWP) at 
different time horizons). The air quality and noise module are similarly rapid, reduced-form 
models which provide metrics by airport for the noise and local/regional air quality impacts 
of the projected aviation system. The regional economics module looks in more detail at the 
economic impacts, including benefits such as increased employment as well as costing of 
noise and air quality impacts. The output data from the first four AIM modules can also be 
used more generally as input to external impacts models: for example, the model includes 
the option to produce detailed emissions inventories which can be input into climate models.   
A more detailed representation of the model structure, including sub-models and data flows, 
is given in Figure 2. Models which have been added or updated for AIM2015 are shown with 
a white background. Additionally, as part of the ACCLAIM project the demand, fare and airline 
activity blocks can be substituted by an airline behavior model which estimates the airline 



response to system changes by maximizing airline profit. This model is not included in 
AIM2015 but more information is available on it on request. Each individual sub-model is 
discussed in more detail in the sections below.  

 

Figure 2. AIM, detailed structure showing sub-modules. 

 The structure of the rest of the report is as follows. Section 2 discusses the scope of the 
model, in terms of flights and airports covered, aircraft size classes, passenger types and types 
of modellable policy. Section 3 discusses the methodology for each module in more detail. 
Section 4 discusses the future projections that are needed to run the model. In section 5, we 
show validation outcomes for the integrated model, including outcomes for 2005-2015 using 
2005 base year data. In Section 6, we discuss how to run the model, what inputs are needed, 
and what outputs are produced. The appendices contain parameter estimates for some of 
the models discussed below.   

2. Scope  
 

2.1 Types of flight 
 
There are many different components to the global aviation system. As well as passengers, 
airlines carry mail and cargo – sometimes in the holds of passenger aircraft, sometimes in 
separate cargo aircraft. Flights may be scheduled or unscheduled. Military and general 
aviation are also sources of aviation fuel use and emissions, as are helicopter flights. Whilst a 
relatively large amount of data is available on scheduled passenger flights, this is not the case 
with other types of flight. For example, very little information is available about military flights 
and their fuel use.  



 
Currently AIM models only scheduled passenger flights. It accounts for the weight of hold 
freight when modelling fuel use, but does not model separate freighter flights3.  When 
comparing model outputs with external fuel and emissions inventories that are based on fuel 
uptake from all sources (e.g. IEA (2017) we would expect AIM to produce output that is 
somewhat below observed global totals. In particular, freight in 2015 accounted for around 
24% of global aviation tonne-km performed (ICAO, 2016). We take account of hold freight in 
passenger aircraft when modelling aircraft weight load factor, but do not account for 
dedicated freighter aircraft, which carry around 40-50% of air freight (e.g. FTA, 2008). 
Unscheduled passenger flights accounted for 5% of global RPK in 2015 (ICAO, 2016), and 
military aviation has been estimated to be around 7-13% of aviation fuel use (Wilkerson et al. 
2010; ICCT, 2019). Therefore we would expect our base year total fuel use to be 
approximately 20-30% below the IEA total fuel use from all sources, as observed in Section 5.  
 
 

2.2 Geographic scope 
 
There is no set limit on the number of cities or airports that can be modelled with AIM. 
However, the year-2015 and year-2005 base year datasets contain data for sets of cities and 
airports that account for around 95% of global RPK. These flights are modelled in detail, but 
we also approximate some quantities for flights to and from the airport set from airports 
outside the set, to get the correct airport movement totals at each airport, which are needed 
for emissions and delay modelling. The base year 2005 dataset includes 699 cities and 1127 
airports, between which 29803 separate flight segments are modelled. The base year 2015 
dataset includes 878 cities (including a more detailed set of minor UK airports) and 1169 
airports, between which 40265 separate flight segments are modelled. Airports are grouped 
into cities primarily by a distance-based criterion: we assume two airports are likely to be in 
the same city region if they are within 31km of each other and there is a straightforward 
ground connection between them. Other airports are dealt with on a case-by-case basis. We 
allow city regions to extend across national borders (with the exception of closed borders) as 
there are numerous global examples of airports serving cities in adjacent countries (for 
example, Basel airport serves Swiss, French and German demand). We exclude airports which 
had no scheduled flights in the base year, as derived from global schedule data (Sabre 2017). 
In the model input databases, the full list of cities is given in the file CityData.csv and the full 
list of airports is given in the file AirportData.csv. The base year flight network for 2015 is 
shown in Figure 3; busier routes are indicated with darker/thicker lines, airports are shown 
as dots, and cities are filled circles scaled with city population. 

                                                        
3 Because hold freight flows are estimated in AIM, it is possible to produce simple models of freighter 
networks in situations where aggregate air freight flows are available (for example, at a country-country level), 
by subtracting hold freight from total air freight flows and using aggregate data on freighter fleet capacity and 
load factor. In situations where AIM emissions projections including freight are required (e.g. Dray & Doyme, 
2019), this is the approach which has been used.  



 
Figure 3. Base year flight network for the 2015 base year model. 

There is no absolute requirement to run the full global city or airport set when running AIM – 
it is possible to run a subset of airports (e.g. just Europe) if a shorter runtime is needed or 
other regions are not of interest. However, this means that flights into and out of the subset 
of airports will only be approximately modelled. 
 

2.3 Aircraft size classes 
 
For the current version of AIM, we use nine aircraft size classes. These are adapted from the 
Sustainable Aviation aircraft size classes (e.g. Sustainable Aviation, 2015). Sustainable 
Aviation is a collaborative project between major UK airlines, airports, air navigation service 
providers and manufacturers, aimed at delivering a long-term strategy which allows the 
industry to grow in a sustainable fashion. This represents a substantial increase in resolution 
over previous versions of AIM, which used a three-size classification (e.g. Dray et al. 2014), 
and allows more detailed assessment of noise, fuel use and local air quality impacts. Aircraft 
are assigned to classes based on number of seats and MTOW. In Figure 4 we show base year 
classification across all aircraft models (excluding freight and combi aircraft) by typical seat 
number, MTOW and year 2015 aircraft-km performed (AKM; RJ = Regional jet, SA = Single-
aisle, TA = twin-aisle, VLA = very large aircraft).  
 



 
Figure 4. Aircraft size classification by MTOW and typical number of seats. 

To model baseline emissions, noise and cost, we need to use a reference aircraft to represent 
each size category. These are shown in Table 1. Reference aircraft are chosen based on their 
share of base year AKM in their size class and the need to have a representative spread of 
different airframe and engine manufacturers. The reference aircraft are primarily used in the 
aircraft performance and cost models described in the section below on the Aircraft 
Technology and Cost model.  Reference engines are used to derive some engine parameters 
that are used for emissions modelling, e.g. for PM. 
 
Table 1. Aircraft size classes used in the updated AIM model 

Size Category Approx. seat 
range 

Reference aircraft Reference engine 

1. Small regional jet 30-69 CRJ 700 GE CF34 8C5B1 



2. Large regional jet 70-109 Embraer 190 GE CF34 10E6 

3. Small narrowbody 110-129 Airbus A319 V.2522 

4. Medium narrowbody 130-159 Airbus A320 CFM56-5B4 

5. Large narrowbody 160-199 Boeing 737-800 CFM56-7B27 

6. Small twin aisle 200-249 Boeing 787-800 GEnx-1B67 

7. Medium twin aisle 259-299 Airbus A330-300 Trent 772B 

8. Large twin aisle 300-399 Boeing 777-300ER PW4090 

9. Very large aircraft 400+ Airbus A380-800 EA GP7270 

 
 

2.4 Types of Passenger 
 
Demand models frequently divide passengers according to the purpose of their trip (e.g. 
business/leisure) and/or by categories such as age, gender or employment status. In the 
current version of AIM, only a single passenger category is used. We use average fare over all 
ticket types and do not track whether passengers choose economy or higher-class tickets. 
This is primarily a reflection of data availability and the current demand model in use (see 
Section 3.1) and is planned to be addressed in future versions of the model. We anticipate 
modelling demand at least for economy (including premium economy) and higher (business 
plus first class) tickets. One consequence of this is that we do not track the different responses 
of business and leisure passengers to changes in fare (e.g. IATA, 2007; business passengers 
are typically less price-sensitive).  
 

2.5 Policy Assessment 
 

AIM can be used to assess a wide range of scenarios and policy options. In the past, it has 
been used to assess the impact of ticket taxes (e.g. Dray et al. 2008); emissions trading (e.g. 
Dray et al. 2009); alternative fuels (e.g. Krammer et al. 2013); the availability of new aircraft 
technologies (e.g. Timmis et al. 2015; Dray et al. 2018); the retirement and replacement of 
older aircraft funded by a carbon tax (Dray et al. 2014); to assess uncertainty due to future 
uncertainty in global income, population and fuel price trends (e.g. Dray et al. 2019); and to 
assess carbon leakage due to country-level aviation policy (Dray & Doyme, 2019). Many other 
policy options are modellable with only minor adaptations. If you are unsure whether AIM is 
suitable to model a particular policy option, it is best to ask the modelling team via one of the 
contacts in the contacts section at the end of this report.   
 



3. Methodology 
 
3.1 Demand Module 

 
The demand model contains three major components. True origin-ultimate destination 
between each pair of cities in the model is projected using an OD demand model. This demand 
is then distributed between available itineraries using an itinerary choice model. The demand 
and itinerary choice are influenced by itinerary fares, which are calculated by a fare model 
which uses airline costs from the Aircraft technology and cost model as an input. These three 
models are discussed individually below.  
 
3.1.1 OD demand model 
 
The OD demand model projects true origin – ultimate destination demand between a set of 
global cities. For the updated model, we use a gravity-type model similar to that used in the 
original AIM (e.g. Dray et al. 2014):  
 
ln𝑁$% = 	𝛽) +	𝛽+ ln(𝑃$𝑃%) + 𝛽/ ln(𝐼$𝐼%) 	+ 	𝛽1 ln(𝑓$% + 𝑣𝑜𝑡	𝑡$%) +	∑ 𝛽7𝐷$%77 , 
 
where Nod is the total passenger demand by any route between cities o and d, Po and Pd are 
the populations of the greater metropolitan areas of o and d respectively, Io and Id are the per 
capita household incomes of o and d, fod is the average fare for passengers travelling between 
these cities over all routes, vot is the passenger value of time, tod is the average time (including 
delay) to travel between the two cities, Dod are dummy variables capturing other elements of 
the city-city connection (e.g. whether it is a domestic route, whether a road or high-speed rail 
link exists between the cities, etc.), and the parameters ß are estimated. Elasticity parameters 
by world region-pair and distance (short-, medium- or long-haul) are taken from Dray et al. 
(2014), including the use of IATA-recommended income elasticities (IATA, 2007). Values of 
time for air travel are taken from US estimated values and adjusted for different world regions 
by purchasing power parity (PPP) gross domestic product (GDP) per capita as in INFRAS/IWW 
(2000). To account for city-city level factors which are not captured in this model (for example, 
people from city A having a historical preference for taking holidays in City B), we also scale 
origin-destination flows by the ratio of actual to modelled demand in the base year.  

The main parameters used in this model are given in Appendix 1. The code for the demand 
model is in the file runDemandModel_v10.java and OD demand is modelled in the subroutine 
ODdemand. Data on base year city characteristics is given in CityData.csv, and on 
characteristics by city-pair in DataByCityPair.csv. Model parameters are included in the file 
Elasticities.csv. 
 
3.1.2 Itinerary choice model 
 
Most air journeys give passengers multiple itinerary options. For example, travel may be 
direct or via a hub airport. In previous versions of AIM, passenger routing choices were fixed 
at base year values. However, this fails to take account of how passengers may modify their 
decisions if the characteristics of one or more routing options change. In this version (v9), we 



directly model passenger itinerary choice using a multinomial logit model. The number of 
passengers between cities o and d on itinerary k in year y is modelled as 
 

𝑁$%9: =
;<=>?

@<=A>

∑ ?@<=B>B
  ,  

 
where the deterministic part of the utility, Vodky, for an itinerary k between cities o and d, 
travelling between airport m in o and and airport n in d, is: 
 
𝑉$%9: = 	𝛾) +	𝛾+𝑓$%9: +	𝛾/𝑡$%9: +	𝛾1 log𝑓𝑟𝑒𝑞$%9: +	𝛾J𝑁𝑙𝑒𝑔𝑠$%9: +		𝛾N𝑃O,:Q+ +
		𝛾R𝑃S,:QT  , 
 
and fodky is the itinerary fare as estimated by the fare model (Section 3.1.3), todky is the total 
itinerary travel time, freqodky is the itinerary frequency, Nlegsodky is the number of flight legs 
in the itinerary, 𝑃O,:Q+is the total number of passengers using airport m in the previous year, 
and the parameters	𝛾	are estimated. Note that this is a change from version 8 of AIM, as used 
in Dray et al. (2018), which used origin and destination airport fixed effects. Passenger 
numbers, schedule and fare data are taken from Sabre (2016). Parameter estimates for major 
world regions are given in Appendix 2. The code for the demand model is in the file 
runDemandModel_v10.java and itinerary choice is modelled in the subroutine 
CalculateItinerary. Model parameters are included in the file Elasticities.csv. 
 
3.1.3 Fare model 
 
In previous versions of AIM, changes in fares from base year values were modelled based only 
on changes in airline cost. In reality, there are many more factors that affect the fares on a 
given route. For demand between cities o and d, passengers will have the option of multiple 
different airport-airport itineraries k, from some airport m in o to some airport n in d, and 
potentially via some number of hub airports.  For this version (v9), we have estimated a 
detailed fare model to calculate the average fare for each available passenger itinerary: 
 
ln 𝑓$%9 = 	𝛼) +	𝛼+ ln 𝐹𝐶$%9 +	𝛼/ ln 𝐶𝑃$%9 +	𝛼1 ln𝐶𝐹$%9 +	𝛼J ln 𝐶𝑈𝐼16OS +	𝛼N ln𝐴𝐻𝐻𝐼OS 
+	𝛼R ln 𝐿𝐻𝐻𝐼$%9 +	𝛼^ ln 𝐹𝑟𝑒𝑞$%9 +	𝛼_ ln𝑁$%9 +	𝛼`𝐿𝐹$%9+	𝛼+) ln𝑅𝑆$%9 +	𝛼++𝑁𝑙𝑒𝑔𝑠$%9  

+	𝛼+/𝐻$%9+	𝛼+1(𝐶O)+	𝛼+J(𝐶S) 
 
where fodk is the fare between cities o and d on itinerary k, FCodk is the sum of fuel cost per 
passenger over all segments on the itinerary, CPodk and CFodk are the sum of per-passenger 
and per-flight based nonfuel costs over all segments on the itinerary, CUI16mn is the mean of 
the average 16-hour capacity utilisation index (CUI) for airports m and n, AHHImn is the mean 
airport-level Herfindahl-Hirschmann Index (HHI)4 over airports m and n, LHHIodk is the 
geometric mean of the city-pair HHI for all segments on itinerary k, Freqodk is the yearly 
frequency of the given itinerary, Nodk is the number of passengers using this itinerary, LFodk is 
the geometric mean of passenger load factor over all segments, RSodk is the share of the total 
origin-destination passengers on this city-pair using the itinerary, Nlegsodk is the number of 

                                                        
4 The HHI is the sum of the squares of the market shares (in passengers) of all airlines in the given market, and 
is used to assess the amount of competition in that market.  



flight legs in the itinerary, and Hodk is the number of major hub airports used on itinerary k. 
The parameters 𝛼 are estimated; 𝛼+1 and 𝛼+J are origin and destination country fixed effects 
terms. Data on fares by itinerary, schedules and passenger numbers is taken from the Sabre 
Market Intelligence database (Sabre, 2016). Airline costs are generated by the airline cost 
model described in Section 2.7. Using the model, we obtain global fare per passenger-km of 
0.09 year 2015 US dollars in 2015 and 0.10 year 2015 US dollars in 2016, using the 2015 base 
year model. These numbers match well to global estimates of total airline revenue per 
passenger-km performed (e.g. ICAO, 2016b) of around 0.11 year 2015 US dollars in 20155. 
  
More information on this model, the estimated parameters, and its validation is given in 
Wang et al (2017; 2018). Fares calculated by the fare model are combined with passenger 
shares for different itineraries given by the itinerary choice model (Section 3.1.2) to calculate 
average fares by origin-destination city pair, which are then used in the demand model 
(Section 3.1.1). The model used in the current version of AIM has minor changes to that used 
in the previous version and the cited papers which reflect modest improvements in the input 
data. A table of main parameters is given in Appendix 3. The code for the demand model is in 
the file runDemandModel_v10.java and fares are modelled in the subroutine CalculateFares. 
Model parameters are included in the file Elasticities.csv. 
 
In combination, the gravity, itinerary choice, and fare models project the number of 
passengers on each airport-airport segment. The three models interact extensively with each 
other, with the fare model balancing the demand side with the supply components of AIM, 
here expressed via airline costs. To find a solution, we iterate between all components of the 
model until segment demand is stable on all modelled segments. The resulting base year 
demand by airport in the 2015 base year model for the top 50 global airports is shown in 
Figure 5.   

 
Figure 5. Total demand by airport, top 50 global airports in the 2015 base year. 

                                                        
55 Note that we do not expect the two numbers to match exactly, as airline ancillary and cargo revenue are not 
included in our model. Ancillary revenue, which includes items such as food sales and website advertising, was 
around 3-8% of total revenue for US network carriers in 2011 (Hao 2014), and cargo revenue is around 2% 
(Stalnaker et al. 2016). Fare per RPK also includes some taxes that do not accrue to airlines. Nevertheless, we 
expect the two figures to be similar. 
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Modelled demand is typically within 10% of actual for most airports. Future versions of the 
model may further address the attraction of routing through of some airports (e.g. DXB) 
where the hub airport itself is marketed as an attractive destination, which at present is not 
well-captured.  
 
3.2 Airport Activity Module 
 
The Airport Activity Module takes passenger demand by segment from the Demand Module. 
It converts this to aircraft movements by segment and per airport, and calculates the resulting 
delays at a given airport capacity. Movements and delays are passed to the Aircraft 
Movement Module, which calculates the location and type of emissions; the Aircraft 
Technology and Cost Module, which uses them to estimate airline costs per route; and the 
Demand Module, where delays may influence passenger choice.  
 
There are two main components to the Airport Activity Module. First, the proportion of 
aircraft of each size class (as given in Table 1) used on each route needs to be estimated. In 
combination with simple assumptions about load factor this gives the flight frequency per 
route. This is done by an Aircraft Size Choice Model. The flight frequency per route can be 
used to estimate the yearly number of movements at each airport. Given assumptions about 
how these movements are distributed through the day, this can be used to estimate airport 
delays; this is done by the Delay Model. Both are described individually below.     
 
3.1.2 Aircraft size choice model 
 
Once passenger demand per segment is generated, this needs to be translated into a feasible 
flight schedule. We use a multinomial logit model to project which aircraft types will be used 
on which segments, based on segment- and airport-specific variables such as segment 
demand, runway length and number of operating low-cost carriers in the base year. This is 
similar to the approach used in Reynolds et al. (2007) but has been updated for the current 
version of AIM to account for an increase in the number of aircraft size classes modelled and 
to include additional relevant variables.  The proportion of aircraft, prmns, of each size class s 
on each segment between airports m and n is estimated as: 
 

𝑝𝑟OSd =
?efgh

∑ ?efgBB
, where 

 
𝑈OSd = 	𝜃) +	𝜃+𝑑OS +	𝜃/ℎO +	𝜃1ℎS +	𝜃J𝑁OS +		𝜃N𝐿𝐹OS +		𝜃R𝑅O + 𝜃^𝑅S +
	𝜃_𝑁𝐿𝐶𝐶OS +	𝜃`𝐻𝐻𝐼OS , 
 
and dnm is the distance between airports m and n, hm and hn are dummy variables indicating 
whether m and n are major hub airports, Nmn and LFmn are the number of passengers and the 
passenger load factor on the segment, Rm and Rn are the lengths of the longest runways at m 
and n, NLCCmn is the number of low-cost carriers operating on the segment, and HHImn is the 
segment HHI in terms of airline passenger share. Combined with typical load factors for each 
segment this allows the overall and size-specific flight frequency to be estimated. Main 
parameter estimates are given in Appendix 4. In Figure 6, we show the resulting proportion 



of aircraft of each size class by distance as projected by the model, compared to actual year 
2015 schedule data (Sabre, 2016). 
 
As shown in Figure 6, the implied aircraft fleet by size and distance category is generally 
reproduced well, but is less accurate for the smallest aircraft size class. Applying the model to 
the base year flight network, the total global fleet for size classes 2-9 is reproduced to within 
ten percent in each case, but for the smallest size class we underpredict demand for aircraft 
by around 30%. This may reflect the specific use patterns of these aircraft and the carriers 
that use them, e.g. constraints at small regional airports with few facilities and small carriers 
with limited capital, which are not currently reflected in the model.  
 

 
Figure 6. Modelled proportion of aircraft used by distance, compared to year 2015 schedule 
data. 

Figure 7 shows the corresponding distribution of implied fleet by size class and world region, 
against implied fleet from base year schedule data (Sabre, 2017). As discussed above, the 
model underpredicts demand for the smallest size class across all regions. Other size class-
region combinations are more closely matched. The model does not perfectly capture the 
split between medium and large single-aisle aircraft (size classes 4 and 5) in Asia and North 
America. This is primarily a reflection of the strong degree of overlap in the characteristics 
and use of these size classes. As future technologies are likely to have similar impacts across 
the narrowbody size classes via closely-related families of narrowbody aircraft (e.g. the Airbus 
A319/A320/A321 or Boeing 737 families) the overall impact on model outcomes of this is 
likely to be small.   
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We assume historical load factor values by airport-airport segment are maintained unless 
there is a specific intervention to change them (e.g. a new technology or operational measure 
is introduced which has an effect on load factor). In combination with the typical number of 
seats per size category and the estimated proportions of aircraft types per segment, this 
allows flight frequency by aircraft size on a segment to be estimated. It also allows demand 
for flights by airport to be assessed, so that delays can be calculated using the delay model.  
 

 
Figure 7. Implied fleet by size class and world region, model versus actual schedule data, for 
the 2015 base year. 

    
The demand for aircraft by size class and world region is compared to the currently-existing 
fleet to assess the number of new aircraft required. In the case that more aircraft are already 
in the fleet than are currently needed, we assume that the excess aircraft are put into storage; 
aircraft in storage may be reactivated in a subsequent year if demand increases enough that 
they are needed, or may retire directly from storage, depending on their age and the 
retirement model parameters (e.g. Dray, 2013).  This assumption means that where the 
model over-predicts aircraft demand for a given size class and region, new aircraft are 
ordered, but aircraft are not initially removed from the fleet in size classes and regions where 
the model under-predicts demand. As discussed further in Section 5, this leads to total fleet 
overestimates in the first few years of a full model run if stored aircraft are not accounted for, 
which correct themselves over approximately a five-year period due to natural fleet turnover.  
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The aircraft size choice model is in the file run_FRSMdl_v8.java, which is called from the main 
airport activity module (run_ArptActMdl_v24_comb.java). 
 
3.2.2 Delay model  
 
The rapid delay model used in AIM is described extensively in Evans (2008). The aircraft size 
choice model gives the yearly demand for aircraft movements from each airport. We assume 
demand is distributed throughout the day similarly to the way it was distributed in the base 
year (on average). This allows us to get the average demand for arrivals and departures per 
three-hour time bin for each airport and year.  
 
The rapid delay model uses different approaches depending on whether demand is close to 
it the airport’s declared runway capacity or not. For airports that are well below capacity, 
delay is modelled using classical steady-state queueing theory, assuming a M/M/1 queue (e.g. 
Larson and Odoni, 1981). For airports that well exceed capacity, the cumulative diagram 
approach is used, which projects a linear increase in queue size with time that demand is 
greater than capacity (e.g. Hansen, 2002). For airports that are close to capacity, delays are 
calculated using both methods and interpolated between. This modelling approach is shown 
schematically in Figure 8.   

 
Figure 8. Delay modelling methodology. 

Modelled average arrival and departure delay for the top 50 airports by passenger traffic in 
the 2015 base year is shown in Figure 9 and Figure 10, against data on actual delays from 
Flightstats (2016), FAA (2016) and BTS (2017). Delay is generally well-reproduced, as was the 
case also when the model was used with year-2005 data (Evans 2008). Deviations from 
observed values arise from several sources. First, demand is not perfectly reproduced for all 
airports, which can lead to delay above or below what is expected. Second, the model 
overpredicts delay at some airports that are very close to their capacity limits (e.g. London 
Heathrow (LHR), Istanbul Atatürk (IST), Mumbai Chhatrapati Shivaji (BOM)). This likely reflects 
that these airports have additional delay management mechanisms that are not included in 
the current model. 
 
Delays have an impact both on passenger journey times and airline costs. As airlines are 
operating aircraft for longer on delayed routes, they experience greater per-flight costs, 



which in turn may affect ticket prices. Passengers may also respond to increases in journey 
time on a given itinerary by changing to an alternative itinerary or choosing not to travel.    
 
When the model is used to project future demand, it requires an assumption about how 
future capacity develops. If capacity is kept at base year values, increasing demand leads to 
delays that are unrealistically large. Currently, the standard assumption in the model is that 
capacity is expanded as required to keep delays at base year values. This is a more realistic 
assumption in parts of the world for which capacity expansion is straightforward. However, 
in regions where airport capacity expansion is more difficult, it is more likely that passengers 
and/or airlines will start to switch demand to alternative airports with more space. These 
issues will be addressed further in future updates of the model, as we move towards a model 
that can more accurately assess the impact of adding capacity at different airports. 

 
Figure 9. Average arrival delay for the top 50 airports by passenger traffic in the 2015 base year, modelled and actual. 

 
Figure 10. Average departure delay for the top 50 airports by passenger traffic in the 2015 base year, modelled and actual. 
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The code for the Airport Activity Module is included in the file 
run_ArptActMdl_v24_comb.java; code related to the modelling of LTO operations is in the 
file run_LTOOpsMdl_v25.java, and the code specifically for the delay modelling in the file 
surfaceQing_v13.java. This code also calls CumDiagSteadyStateQ_Mdl_v9.java to calculate 
detailed queueing per airport. Input data parameters by airport come from the file 
AirportData.csv, and those by flight segment are in the file AirportSegmentData.csv. 
 
3.3 Aircraft Movement Module 
 
The routes that aircraft take on any given flight segment are not straightforward great-circle 
routes. Instead, they are affected by multiple factors, including airspace congestion, safety 
requirements, the relative costs of travelling through airspace belonging to different 
countries, weather avoidance and wind optimization (Figure 11). The Aircraft Movement 
Module accounts for increases in fuel use as a result of real-world inefficiencies in routing 
caused by these and other factors. It can also be used to generate inventories of the location 
of global emissions that can be used in climate modelling.  
 

 
Figure 11. Potential causes of routing inefficiency 

The modelling behind the Aircraft Movement Module is described in Reynolds (2009). Based 
on an analysis of radar track data in comparison to great circle routing, regional efficiency 
metrics are developed describing the ground track extension resulting from sources of routing 
inefficiency. Radar track data is derived from a number of sources, as described in Reynolds 
(2008), including Flight Data Recorder (FDR) data from Swiss Airlines, FAA ETMS data, and 
routing data from the MOZAIC emissions-measurement project (e.g. Marenco et al. 1998). 
Lateral route inefficiencies are considered as ground track extension (GTE) flown beyond the 
great circle (GC) distance, and are separated into departure terminal area (DepTA), enroute 
and arrival terminal area (ArrTA). A schematic description of this division is shown in Figure 
12. 
 



 
Figure 12. Terminal area and enroute ground track extension definitions. 

 
The lateral inefficiencies are calculated as:  
 
𝐺𝑇𝐸o?pqr = s𝐷qt +	𝐷quvS +	𝐷o?pwvxy −	𝑅qr, 
𝐺𝑇𝐸{S_v$ux? = 	𝐷{S_v$ux?_w}xuw~ −	𝐷{S_v$ux?_�� , 
𝐺𝑇𝐸rvvqr = 	 (𝐷rvv7�w~ +	𝐷�$~% +	𝐷o$�S�7S% +	𝐷�wd? +	𝐷�7Sw~) −	𝑅qr, 
and 
𝑇𝐺𝑇𝐸 =	𝐺𝑇𝐸o?pqr +	𝐺𝑇𝐸{S_v$ux? +	𝐺𝑇𝐸rvvqr. 
 
A summary of lateral ground track extension results is given in Table 2. 
 
Table 2. Ground track extension by region, from Reynolds (2008). 

Region Average route length in 
data (nm) 

Average 
TGTE (nm) 

Average 
TGTE (%) 

Flight data source 

Intra Europe 415 57 14 FDR (n=4420) 
Intra US 635 76 12 ETMS (n=2946) 
Intra Africa 489 41 8 Mozaic (n=525) 
North Atlantic 3430 176 5 Mozaic (n=3311) 
Europe – Asia 
(typical) 

4705 316 7 Mozaic (n=2448) 

Europe-Asia 
(Extreme) 

4730 1100 23 Mozaic (n=37) 

 
Based on this analysis, we incorporate a regional ground track extension model into AIM, in 
which ground track extension is considered as a function of world region-pair (capturing the 
current weather and airspace constraints existing in each region) and distance (capturing the 
greater inefficiency applicable to shorter routes, for which a greater proportion of the flight 
is in the terminal area), i.e. 
 
𝐷r}xuw~,SO = 	𝜇+,vgvf +	𝜇/,vgvf𝐷��,SO  
 
for distance flown D between airports n and m in regions rn and rm.  
 



The ground track extension model addresses the typical extra distance flown by aircraft due 
to en-route inefficiencies. However, this is not the only source of additional fuel use: flying at 
non fuel-optimal altitudes or speeds also raises average per-flight fuel use above typical 
performance modelling outcomes, and may also vary significantly due to individual flight 
circumstances. The discrepancy between lateral distance-corrected performance modelling 
and fuel use in practice has been noted by multiple authors. For example, Reynolds (2009) 
finds lateral inefficiency of 13% but fuel inefficiency of 23% for a sample of European A320 
FDR data; Poll (2018) similarly estimate global ATM-related fuel inefficiency to be around 20% 
(including lateral, altitude and speed-related inefficiencies); Graver & Rutherford (2018) find 
a similar gap between performance model-generated outcomes and reported fuel use for 
transatlantic flights; ICCT (2019) estimate an average 9% difference comparing US airline fuel 
use data with distance-corrected performance modelling outcomes; and Dray & Doyme 
(2019) find a shortfall of just below 10% in estimated UK departing passenger aircraft fuel 
uptake after accounting for lateral inefficiency and freight usage. Given the consistency of the 
fuel discrepancy across samples of flights containing very different mixes of aircraft size and 
stage length, AIM allows a non-lateral inefficiency factor per aircraft size class to be applied 
in the file AircraftPerformanceParams.csv. In the most recent version of the model, this is set 
at 9% for all size classes. 
 
 
The code for the Aircraft Movement Module is in run_AircraftMovementModule_v25.java. 
Regional parameters for the model are included in the data input file RegionPairData.csv. 
 
 
3.4 Aircraft Technology and Cost Module 
 
The Aircraft Technology and Cost Module takes estimates of aircraft movements by route, 
projections of future fuel, carbon prices and available technology characteristics, and data on 
the existing fleet. It uses these to project the how the size, age distribution and technological 
composition of the aircraft fleet will change over time, and what impact this will have on 
emissions and on airline costs. Airline costs are an output to the Demand Module, where they 
affect fares and hence passenger demand.  Fleet characteristics are used to generate fuel use 
and emissions by segment, which are a model output and can also be used to generate 
detailed emissions inventories by location in the Aircraft Movement Module, and as input to 
the Global Climate and Air Quality Modules.  
 
There are four main components to the Aircraft Technology and Cost Module. The Aircraft 
Performance Model uses the reference aircraft (Table 1) to estimate fuel use and emissions 
per flight. The Fleet Turnover Model calculates aircraft retirements and the age distribution 
of the fleet, and how this affects fuel use and emissions. The Technology Choice Model 
calculates which of a range of available current and future technologies airlines will adopt, 
based on their costs and benefits for each size class, aircraft cohort and region.  The Airline 
Cost Model then calculates the corresponding cost to airlines of operating these flights with 
the given fleet and technology characteristics. These components are described individually 
below. 
 



3.4.1 Aircraft Performance Model 
 
The original AIM model calculated fuel use by a simple fuel burn rate-based-approach. For 
this updated version (v9), as well as expanding the number of aircraft size classes, we have 
also integrated a rapid fuel use and emissions model which calculates performance by flight 
phase based on a model estimated from the output of the PIANO-X aircraft performance 
model (Lissys, 2017). Fuel use and NOx emissions and time in stage for the nine reference 
aircraft are calculated for climb, cruise and descent, for passenger load factors between 0 and 
1 and stage lengths between 500 km and each aircraft’s maximum range. For each aircraft 
size class s, variable and flight phase p for distance D and payload PL a model of the type: 
 

𝑉𝑎𝑟dp = 	 𝜂dp,) +	𝜂dp,+𝐷 + 𝜂dp,/𝐷 ∙ 𝑃𝐿 +	𝜂dp,1𝐷/ +	𝜂dp,J𝑃𝐿 +	𝜂dp,N𝐷/ ∙ 𝑃𝐿 
 
is estimated. Parameters 𝜂dp	for these models are stored in AircraftPerformanceParams.csv. 
We assume 100 kg for a passenger with luggage and hold freight average load calibrated 
against available capacity, global totals and typical passenger-to-freight payload ratios by 
region-pair (ICAO, 2009; ICAO, 2014; ICCT, 2019). It is assumed that the ratio between 
passenger and freight payloads per route group will remain similar into the future, with 
fluctuations in freight demand growth compared to passenger demand growth resulting 
primarily in changes to the number of freighter aircraft flights flown. This results in an 
effective switch towards belly freight and away from freighter aircraft over time, as discussed 
by Boeing (2018).  
 
For the gate, taxi and holding phases we use fuel use and emissions rates as previously. These 
allow the model to adjust for emissions from delay incurred during taxi with engines on, and 
for different lengths of the holding phase.  For take-off and landing standard fuel use and 
emissions totals by type are used. The resulting fuel and NOx totals by flight phase are also 
adjusted by the stock and technology choice models (Sections 3.4.1 and 3.4.2) to take account 
of the age profile of the fleet and changes in the use of different technologies over time, and 
by an optional factor to account for non-lateral routing inefficiencies as discussed in Section 
3.3, above.  Figure 13 shows the block fuel output of the rapid performance model for the 
nine reference aircraft; more information can be found in Al Zayat et al. (2017). Similarly, 
Figure 15 shows block NOx by aircraft size class, stage length and load factor.  



 
Figure 13. AIM performance model block fuel use for the nine reference aircraft, by passenger 
load factor (LF) and stage length. 

The performance model takes distances flown including ground track extension from the 
aircraft movement module. The code for the performance model is included in 
run_LTOOpsMdl_v26.java and input parameters are given in AircraftPerformanceParams.csv. 
Due to substantial differences in performance behavior over distance and load factor, electric 
aircraft are modelled separately in the performance model in the case that they are included 
as a future technology option, using electric aircraft performance data from Gnadt (2018) and 
Gnadt et al. (2018) for narrowbody aircraft types and Hepperle (2012) for regional jets. The 
corresponding data for electric aircraft are given in AircraftPerformanceParamsElec.csv. 
 
3.4.1.1 PM modelling in the performance model 
 
To assess air quality and health impacts at airports, we also need to be able to model PM 
emissions. PM also has an impact on contrail and cirrus formation, although the direct 
impact on radiative forcing of the particles themselves is small. PM emissions are not 
included in the output of PIANO. Similarly, although engine certification processes measure 
smoke number (SN), this does not straightforwardly convert to emissions metrics that are 
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usable with health or environmental models. Instead, we use methodology based on the 
emissions inventory code AEIC (Simone et al. 2013). Estimating PM emissions requires 
several steps: 

• Estimating emissions indices for the non-volatile (black carbon/soot) component of 
PM. These are formed by combustion processes within the engine. We estimate 
emissions indices using the FOX method (Stettler et al 2013). This requires engine 
pressure ratios as an input, which are taken from the ICAO engine emissions 
databank for representative engines for each size class. Fuel flow per engine by flight 
phase is derived from the performance model and is used as a proxy for thrust 
setting, as discussed in Stettler et al. (2013).  

• Estimating emissions indices for the volatile component of PM (arising from sulfates, 
unburnt fuel, engine lubrication oil etc.). These are formed in the cooling exhaust gas 
downstream of the combustor. For these emissions we use the FOA3 method 
(Wayson et al. 2009). There are three components to this model. The first estimates 
PM from sulfates given the fuel sulphur content (thus this component will change 
with ultra low sulphur fuels, including synthetic fuels). The second estimates PM 
from unburnt hydrocarbons using the hydrocarbon emissions index included in the 
aircraft performance model. The third part estimates PM from engine lubrication oil; 
this component is implicityly included in the hydrocarbon calculation. 

• Estimating PM emissions on takeoff and landing from brake and tyre wear. These 
totals are very uncertain, can be significant, and are mainly in the form of PM10. 
Currently we concentrate on PM2.5 and do not model these emissions, but they may 
be added in a future version of the model.  

• Applying a particle size distribution.  Particle size is important for impact modelling, 
with smaller particles generally having more severe health impacts and longer 
atmospheric retention times. PM10 refers to all particles with a diameter less than 
10 µm, and PM2.5 to all particles with a diameter of less than 2.5 µm. Aircraft engine 
PM is primarily PM2.5. As we currently do not include brake and tyre wear, we 
model PM2.5 only.  

• For future projections we need to know how the major input variables are likely to 
change over time. Changes in fuel flow over time are already accounted for in AIM, 
but we need to project how engine pressure ratios (for conventional-technology 
aircraft) are likely to alter over time. To project engine pressure ratios we use a 
linear model over time for pressure ratio relative to the reference aircraft pressure 
ratio, with parameters estimated from the ICAO engine emissions databank. This 
relationship is depicted in Figure 13, below. Changes in PM for alternative 
technologies over and above those projected by this model are handled by the 
technology choice model.  



 
Figure 14. Model for aircraft engine pressure ratio development over time, using data from 
the ICAO engine emission databank (ICAO, 2017) 

The code for PM modelling is included in run_LTOOpsMdl_v26.java. 
 
3.4.1.2 NO2 modelling in the performance model 
 
NOx is the aggregate of NO and NO2 emissions. However, NO2 is a more useful metric for 
projecting human health impacts. The performance model only gives the total NOx 
emissions. However, studies exist which look at how much of this is released as NOx and 
how much as NO2. Wood et al. (2008) find that this ratio is dependent on engine thrust 
setting, with higher NO2 at lower thrust settings. We adopt this relationship in our model, 
using linear interpolation between the points given in Wood et al. (2008) with engine 
condition. As with the PM modelling, we assume fuel flow as a proportion of maximum as a 
proxy for thrust setting. The code for NO2 modelling is included in 
run_LTOOpsMdl_v26.java. 
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3.4.2 Fleet turnover model 
 
The fleet turnover model is based on the fleet analysis in Dray (2013) and Morrell and Dray 
(2009), updated with new data from FlightGlobal (2016). The main purpose of the fleet 
turnover model is to track the composition of the global aircraft fleet in terms of size class, 
age and world region, and to assess how this affects fuel use and other fleet characteristics 
that may impact on technology uptake. For the purposes of this model, the fleet is divided 
into groups by world region (North America, Central America/Caribbean, South America, 
Europe, Middle East, Africa and Asia-Pacific), size class and year of aircraft age. The base year 
data for the fleet is taken from two sources. Regional age distributions by size are sourced 
from the FlightGlobal (2016) fleet database. However, this database does not contain enough 
information on aircraft use to be sure that each aircraft is within the AIM scope. Therefore 
we use implied fleet totals per region and size class from an analysis of global schedule data 
(Sabre, 2017), assuming utilization averages from FlightGlobal (2016) are maintained. 
 

 
Figure 15. AIM performance model block NOx for the nine reference aircraft, by passenger 
load factor (LF) and stage length. 
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For each simulation year, the model assesses how many aircraft would naturally retire in that 
year. For this purpose, we use retirement curves with age from Dray (2013). As shown in 
Figure 16, the proportion of aircraft still active or in temporary storage with aircraft age has 
a relatively consistent S-curve shape over time, with typical age at retirement of around 30 
years. We model this with a logistic function, 
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,  

 
where the active fleet NActive,t at time t is a function only of t and the estimated parameters 
𝜑+ and 𝜑/. Parameters by aircraft type are given in Appendix 5. This model describes how 
retirements are carried out under business-as-usual conditions. In the case that AIM is used 
to model early retirement policies, we typically apply a cut-off age after which all aircraft are 
retired. For example, a cut-off age of 30 years would automatically retire all aircraft at age 30. 

 
Figure 16. Proportion of aircraft still active or temporarily stored by aircraft age. 

Aircraft are assumed to go into storage if supply exceeds demand for aircraft in a given world 
region and size class, but can be removed from storage if there is demand for them in later 
years and they have not yet retired. Aircraft may also be removed from the passenger fleet 
via conversion to freighters. Figure 17 shows the proportion of active aircraft that are 
freighters by aircraft age, analogously to the retirement curve plot above. Freighter 
conversion removes a substantial proportion of older passenger aircraft from the passenger 
fleet and so needs to be corrected for in our model.  
 
As in Dray (2013), we also model freighter conversion with a logistic function,  
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i.e. the proportion of freighters is assumed to be just a function of aircraft age and estimated 
parameters 𝜔+and 𝜔/. Freighter conversion is typically an economic decision which depends 
on aircraft depreciation over time, giving a time window during which most conversions by 
type are carried out, which results in the types of curves seen in Figure 17.  
 

 
Figure 17. Freighters as a proportion of active aircraft, by aircraft age. 

 
Fleet composition by region can also be affected by region to region aircraft sales. For 
example, world regions with greater capital constraints may choose to purchase much of their 
fleet second-hand, leading to older average fleets than would be otherwise projected. We 
also apply a simple, regional GDP-based model of sales, based on Bosbach (2011).  
 
Once these models have been applied, the resulting fleet by size and region can then be 
compared to the sum of the regional segment demand for aircraft by size class at typical 
utilisation. Any shortfall is assumed made up from new aircraft. As discussed above, if supply 
exceeds demand we assume that excess aircraft are temporarily stored. From storage, they 
may either be retired or re-enter the fleet, depending on demand developments in 
subsequent years.  
 
The second purpose of the fleet turnover model is to assess how the age structure of the fleet 
affects aircraft fuel burn and NOx emissions, in comparison to the reference aircraft. Several 
factors may affect this. First, aircraft typically become less efficient per year of age. Following 
Morrell and Dray (2009), we assume an 0.2% increase in fuel burn over the reference aircraft 
per extra year of aircraft age. Second, older aircraft models typically have higher fuel burn for 
a comparable mission than newer ones.  Third, the fleet in any given size class, region and age 
cohort is typically diverse, and may contain several different aircraft models. The average fuel 
burn across this diverse fleet may or may not be equal to the fuel burn of the reference 
aircraft. To correct for these latter two factors, we follow Dray (2013) in assuming that the 
typical aircraft purchased in a given year will have performance part-way between the 
highest- and lowest-available fuel burn models in that year, and modelling the distribution of 
purchases over this range with a triangular distribution estimated from historical data.  For 
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past aircraft, the upper and lower curves are set by historical data. For future aircraft models, 
two options are available. Users can set a typical rate of reduction per year in the fuel burn 
of new aircraft models (e.g. 1%/year). Or this value can be set to zero and new aircraft models 
can be explicitly modelled via the technology choice model6. 
 
The code for the fleet turnover model is located in the file aircraftStockCost_v8.java. Input 
data by aircraft size class is given in the file AircraftData.csv. 
 
3.4.3 Technology choice model 
 
One major use of AIM is in assessing the uptake and use of new technologies. To do this, we 
need to know whether airlines would be willing to invest in them or not, given the prevailing 
economic conditions at the time. New technologies may take several forms, and airline 
investment strategies may differ for each. We consider new aircraft models, retrofits to 
existing aircraft, new operational measures and alternative fuels separately.   
 
New aircraft models include updates to conventional technology (e.g. the A320neo and B737 
MAX ranges) as well as radical new aircraft technologies such as open rotor engine aircraft, 
electric aircraft, blended wing body aircraft, etc. This choice can only be made in the aircraft 
purchase year and any given aircraft cannot be more than one type at once. However, airlines 
in a given world region and size class may choose more than one aircraft model in the overall 
fleet, for example if the model associated with the lowest costs has other usage restrictions 
that mean it cannot be used on all segments. For new aircraft models, we assess the cost-
effectiveness of an aircraft of technology x using net present value (NPV), i.e.  
 
𝑁𝑃𝑉� = 	∑ 𝑅x,� (1 +	𝑖x)⁄q 

x¡)  , 
 
where TN is the time horizon over which the technology is evaluated, i is the discount rate, 
and Rt,x is the cash flow associated with technology x in year t. The discount rate and time 
horizon are user input values in AIM. By default they are set at ten percent and seven years. 
The net present values for each available technology in a given year for a given world region 
are assessed. Airlines are assumed to choose the technology with the greatest net present 
value. In practice, because we typically assume equal revenue is available from each 
technology and look at the differences in cost between the reference and alternative 
technologies, this is expressed as the difference in discounted airline cost terms between the 
reference and each alternative technology. If more than one alternative technology is better 
than the reference technology, and there is a limit on the uptake of the best technology (e.g. 
it cannot be used on all segments, or is just beginning to percolate into the market) then 
airlines may also adopt the second-best technology as well.  
 
To model cost-effectiveness, the difference in cost by cost category and in fuel use for each 
technology from the reference technology is needed as input to the model. These numbers 
are given in TechnologyMeasureData.csv and are described in detail in the comments to the 
code, for example in datastructures/DataByTechnologyMeasure.java. We do not currently 

                                                        
6 Note that only one of these options should be chosen, or benefits due to new technologies will be double-
counted. 



assume that airlines are able to foresee future developments in the fuel price: instead, 
technologies are evaluated assuming that current fuel prices will remain constant over the 
period of evaluation. 
 
For retrofits, we use a simple payback period model, i.e. we assume a retrofit will be cost-
effective if 
 
∑ 𝑅x,�
q¢
x¡) −	𝑅x,£wd? > 0, 

 
i.e. the technology is adopted if over a period of TP years overall cost savings relative to the 
base technology in use in that aircraft cohort can be made. The payback period is a user input 
but is three years by default. Base technologies can include new aircraft types as selected by 
the NPV model, provided that the retrofit is compatible with those aircraft types. The base 
technologies also include any retrofits that have already been made to a given aircraft cohort 
in previous years. Major retrofits, such as re-engining, are assumed to be only applicable 
during a D-check.  As with the NPV model, we use cost parameters relative to the reference 
aircraft, including applicability, maximum uptake and compatibility with already-adopted 
measures, from the file TechnologyMeasureData.csv. 
 
Operational measures and drop-in alternative fuels are also assessed using the payback 
period model. The primary difference with retrofits is that these measures are assumed easily 
reversible. Therefore in this case the cost-effectiveness of already-adopted measures is also 
assessed. If a measure is no longer cost-effective (for example if the cost of biofuels increases 
significantly, or a different alternative fuel becomes available that costs less) then airlines 
have the option to stop using it.  Parameters for these technologies are also included in 
TechnologyMeasureData.csv. Operational measures can have impacts on mission parameters 
beyond cost and fuel use. For example, reducing tankering is an operational change which 
will effectively change the fuel price available to airlines. These parameters are also included 
for each technology. 
 
The characteristics of future technologies can be highly uncertain. In many cases, estimates 
of the benefits of technologies depend on engineering breakthroughs that have still to be 
made. Therefore the technology adoption model also includes the option to use a lens 
approach to assess the impact of uncertainty in technology parameters (e.g. Allaire et al. 
2014). A lens is a set of input parameters which reflect a particular scenario for future 
technology. For example, we use one lens for a future in which it is particularly hard to reduce 
aviation emissions through technology; this assumes the reduction in fuel use from new 
technologies is at the low end of available estimates, costs are at the high end of available 
estimates, and the date from which the technology is available is at the late end of available 
estimates. Results for different lenses are discussed further in the validation section, below. 
Technology parameters, including changes in aircraft operating costs by cost type and 
changes in fuel burn, are derived from Schäfer et al. (2016) and Dray et al. (2018). A set of 
tables giving the key assumptions from these papers is given in Appendix 6. Biofuels can be 
modelled in several different ways by AIM depending on the information available. 
Assumptions about biofuels are given in Appendix 7. 
 



The code for the technology choice model is in the file aircraftStockCost_v8.java (specifically, 
see the routine getCosts). Data for the technology choice model on technology characteristics 
by size class, technology and lens is given in the file TechnologyMeasureData.csv. Data on 
reference aircraft costs and other characteristics is given in the file AircraftData.csv. 
 
3.4.4 Airline Cost Model 
 
A new model for airline direct operating costs is also estimated for the current version (v9) of 
AIM, based on the same nine aircraft size categories. This model is described in Al Zayat et al. 
(2017), where it is used for the specific case of estimating costs for electric aircraft against 
those of more conventional technologies. Costs are calculated on a per-passenger, per-year, 
per-segment or per-aircraft basis as appropriate and are divided into ownership (e.g. interest, 
depreciation and insurance), volume-related (indirect cost), landing, en-route, maintenance, 
crew, fuel and carbon costs. Landing and en-route costs by size category are derived from the 
RDC airport charges database (RDC, 2017). Landing costs are also divided into international 
and domestic flights, as substantial differences exist in the charges for these flights. Other 
costs are derived from a range of sources, including BTS (2017), Flightglobal (2016) and 
Aircraft Commerce (2017). Fuel and emissions totals are derived from the aircraft 
performance model described in Section 3.4.1 and adjusted for fleet age and technology 
composition.  
 
Although aviation fuel is usually subject to limited or no taxation, fuel costs scale slightly 
differently to oil prices because of the costs associated with producing and transporting the 
fuel. We account for this via a simple model estimated from historical variation in oil prices 
and fuel costs:  
 

𝑃¦u?~,: = 	 𝜁) +	𝜁+ ∙ ¨
𝑃$7~,:

𝑃$7~,£wd?© ª, 

 
for fuel costs in year y in year 2015 dollars per US gallon. Model outcomes are shown in Figure 
18 for the 1980-2015 period.  
 

 
Figure 18. Model for variation in fossil Jet A price with variation in oil price. 

Note that we do not model fuel cost hedging. Broadly, this would act as a smoothing factor 
for oil price trends, as some airlines are paying the previous year’s prices for fuel. However, 
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the extent of hedging varies by airline and is often not publicly available. Additionally, airline 
hedging strategies can be affected by historical variations in oil price (for example, an airline 
that has made a large loss by hedging before a fuel price decrease may decide to stop 
hedging). Parameters for this model are given in the file CostAndSystemParameters.csv. 
 
Crew costs, volume-related costs and the labour component of maintenance costs are 
assumed to vary by world region-pair. The regional scaling factors for these components are 
derived from ICAO (2009). For the simulations shown here, we assume wage costs of the flight 
crew and of staff performing maintenance to remain constant in real terms when projecting 
into the future, but it is also possible to scale wage growth with regional growth in GDP per 
capita. To illustrate the model outcomes, Figure 19 shows airline per-passenger direct and 
indirect operating costs by size class for four example flight segments in the base year, 
assuming a typical load factor per segment. Segment costs are used as input to the fare model 
described in Section 3.1.3. 
 

 
Figure 19. Direct and indirect operating cost model output for four example flight segments. 
Values are only shown where the stage length is below the maximum range of the reference 
aircraft7.  

Segment costs are calculated as part of the per-segment, per-size class loop in 
run_LTOOpsMdl_v25.java. Input data for this model which is by aircraft size class is included 
in the file DataByAircraftSize.csv. Input data by region-pair (e.g. the regional scaling factors 
mentioned above) is included in the file DataByRegionPair.csv. Data on per-passenger and 
per-movement landing costs by airport and size class is in the file AirportData.csv. Data on 
en-route charges by size class is in the file AirportSegmentData.csv.  
 
                                                        
7 JFK: John F. Kennedy Airport (New York), BOS: Logan Airport (Boston), LHR: London 
Heathrow Airport, FCO: Fiumicino Airport (Rome), DXB: Dubai International Airport, PEK: 
Beijing Capital International Airport, GIG: Rio de Janeiro International Airport, MEX: Mexico 
City International Airport. 
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The Demand Module, Airline and Airport Activity Module, Aircraft Movement Module and 
Airline Cost and Technology Module are run iteratively until a solution is reached where there 
is equilibrium between demand and supply. This is assessed via the change in segment 
passenger demand per iteration. Iteration parameters and tolerance levels are set in the input 
file DimensionsAndSolutionParameters.csv.  This iteration is carried out in the file 
AIMController_World_ReqCap_v10_comb.java.  
 
Once convergence is achieved, the model runs a final iteration in which it calculates a range 
of output parameters and sets starting data for the next model year. This includes data for 
the impact assessment modules.  
 
3.5 Global Climate Module 
 
The Global Climate Model takes as input global emissions, fuel use and distance flown by 
altitude band, which is also output by the model as AltitudeData_RunID.csv. It outputs CO2e 
from different sources (CO2, NOx impact on ozone, NOx impact on methane, NOx impact on 
long-lived ozone and contrails/cirrus) as calculated using a range of climate metrics (pulsed 
GWP, sustained GWP, pulsed GTP, sustained GTP) and time horizons (currently 50, 100 and 
500 years). These are output into the file ClimateMetrics_RunID.csv.  
 
The Global Climate Model is a rapid meta-model in which linear approximations are made to 
the response of a detailed climate model response to perturbations from changes in aviation 
emissions. It was originally developed by Helen Rogers at Cambridge University during the 
original AIM project, and is based on a present-day atmosphere. Typically metrics are 
calculated by integrating radiative forcing from each source over the chosen time horizon, 
but the option also exists to use approximation equations from the literature for a shorter 
run time.  
 
GWP and GTP for CO2 are calculated using formulae from IPCC (2001), Berntsen et al. (2005) 
and Shine et al. (2005). CO2 is assumed completely mixed in the atmosphere, i.e. only the 
global CO2 total from aircraft is needed as input.   
 
The NOx impact on ozone is calculated using radiative forcing values derived from the p-
TOMCAT chemical transport model model and data from the AERO2K emissions inventory. 
These encapsulate the climate response for to a given level of change in aircraft NOx, which 
is assumed to be linear. Although AIM can calculate primary NO2 as an output, we use NOx 
emissions rather than NO2 as an input as the p-TOMCAT runs implicitly include the calculation 
of NO2-NOx equilibrium concentrations. The -9% impact of the stratospheric adjustment is 
also accounted for. We model the impact of different NOx emissions indices at different 
altitudes (due to different typical engine settings, different typical cruise altitudes for 
different aircraft types, etc.) but do not currently model the impact of the changes in the 
geographical distribution of NOx.  
 
The fractional change in methane concentrations due to aircraft NOx is derived from changes 
in methane lifetime, using a present-day global mean mixing ratio to calculate the resulting 
radiative forcing impact. Methane perturbations are assumed to be well-mixed and forcing is 
derived from the formula recommended by IPCC (2001). The average impact of methane 



perturbations on long-lived ozone is also considered, based on Berntsen et al. (2005) with the 
results of a multi-model inter-comparison as reported in IPCC (2001).                                                                                              
 
We calculate the impact of line-shaped contrails based on aircraft distance flown from the 
AERO2K emissions inventory and the extent of ice supersaturation (ISS) regions, normalised 
with satellite data.  As the internal calculation of metrics is carried out on a per distance flown 
basis, this effectively assumes a linear response with greater distance flown, i.e. a similar 
distribution of flights through ISS regions. To account for the impact of aircraft emissions and 
contrails on ‘natural’ cirrus, a factor is chosen to scale the line-shaped cirrus radiative forcing. 
This is a user-changeable parameter (‘contrailFactor’ in PhysicalAndClimateParameters.csv) 
and is currently set at 5. Sausen et al. (2005) suggest a value in the range of 2 – 10. Some 
example outcomes of the model are shown in Figure 20.  
 

 
Figure 20. Emissions and distance flown by altitude, and the resulting CO2e in terms of pulsed 
GWP100, for a sample model run in 2015 and 2050. 

 
More information about this model can be found in Krammer et al. (2013), where it is used 
to assess the wider climate impacts of aviation biofuel policy. The code for the climate model 
is in the file run_ClimateMdl_v2.java. Outputs are given in the file 
output/runID/GlobalClimateMetrics_RunID.csv; note that this contains CO2e for a range of 
time horizons and metrics. Depending on the choice of time horizon and metric, the results 
may differ substantially, particularly when considering short-lived effects such as contrails. 
Key input parameters, including the relative RF impact of cirrus to line-shaped contrails, are 
given in the file PhysicalAndClimateParameters.csv. 
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3.6 Air Quality and Noise Module 
 
There are three separate parts to this module. The air quality module is a rapid dispersion 
model which estimates the distribution of primary pollutants from aircraft engines around 
airports. The noise module can either produce noise outcomes in terms of a single output 
parameter (SINE; currently integrated) or generate noise contours (RANE; available as a 
separate code). The population impacts model is an add-on routine in R which takes AIM 
output and overlays pollutant concentrations, noise contours and global population 
distributions to estimate population impacts.  
 
3.6.1 Air Quality 
 
The air quality module is a rapid, standalone model approximating the impact of detailed 
dispersion models for a given set of airports. It is adapted from the open source Rapid 
Dispersion Code (RDC) made available by MIT’s Laboratory for Aviation and the Environment 
(http://lae.mit.edu). This model has been used in multiple contexts to estimate local pollutant 
concentrations across a wide range of airports (e.g. Wolfe et al. 2014; Yim et al. 2015) More 
information about the principles behind the model can be found in Barrett & Britter (2009) 
and in the documentation to the RDC code (Yim & Barrett 2014). Broadly, the RDC calculates 
yearly average pollutant concentrations for a given set of point, line and area sources in a 
computationally efficient manner, allowing it to approximate the output of conventional 
dispersion models at significantly reduced run time. This allows the model to be run for 
multiple airports and years on a timescale that is compatible with the rest of the AIM model. 
As discussed in Yim & Barrett (2014), this approach has been validated against AERMOD runs 
and demonstrates an error of around 5% for 15 investigated airports where both models were 
applied.  
 
To use the adapted RDC code in AIM, three types of data are required. First, we need 
meteorological data for each airport to be modelled. This data is supplied with AIM for a 
subset of airports (currently the top 20 global airports plus selected others) but can be 
generated for any airport. Instructions for obtaining and processing the meteorological data 
are given in Yim & Barrett (2014). Both upper air and surface data are needed. Surface 
weather station data can be obtained freely from the Integrated Surface Database (NOAA 
2008a) and upper air data from the Integrated Global Radiosonde Archive (NOAA 2008b). 
Once obtained, these data need to be processed using the dispersion models AERMET and 
AERMOD to produce data in the format needed for AIM input. To do this, we use the matlab 
script provided with the RDC for this purpose.  The output matrices from this script (referred 
to as ‘AA’ and ‘ss’ in the RDC) give an idea of the dispersion that would be expected for a point 
source in this location, given the typical weather conditions. These are used as AIM input in 
the file MeteorologicalData.csv.  
 
Second, we need layout data for the airport in question. This can include just the runways, or 
runways, terminals and taxiways, depending on the emissions data that is available. Layout 
for most of the airports in the database is given in the file AirportGeography.csv. Sources are 
described in terms of width, length, angle and X and Y displacement from an airport central 
co-ordinate, as well as NO2 and PM2.5 emissions totals (see e.g. Appendix A of Yim & Barrett 
2014).  For runways, we also need the distribution of runway usage (for example, a short or 



crossing runway may be used substantially less than others). These are used to distribute 
airport-level emissions between the different runway area sources. The variable RunGeog in 
AirportData.csv indicates whether layout data is available for a given airport – if this value is 
-1, then layout data is not in the airport database and would need to be added (for example, 
by tracing runway outlines available from global mapping services such as Google Maps). Note 
that the RDC distributes emissions evenly across the runway, i.e. it does not take account of 
typical directions of use or airport-area flight tracks.   
 
Finally, we need airport-level NO2 and PM emissions totals. These are estimated using the 
routines discussed above in sections 3.4.1.1 and 3.4.1.2. Figure 21 shows the base year total 
airport-level emissions of primary PM2.5, NO2 and NOx from aircraft engines, in comparison 
to airport emissions inventories from the literature on a similar scope (note however that not 
all literature values shown are for 2015 and some are projections). These emissions are 
distributed between runways based on the runway use assumptions above.   
 
 



 
Figure 21. PM2.5, NO2 and NOx at the top 20 airports, in comparison with literature 
assessments8 (where available). 

To run the RDC for a given airport for which meteorological and layout data are available, set 
the variable RunGeog for that airport in AirportData.csv to 1. User-specified parameters for 
the size and resolution of the modelled concentration grid are given in 
                                                        
8 Airport data sources: ATL: sustainable management plan, 2011; LAX: Los Angeles World Airports, Midfield 
Satellite concourse EIR, 2012; LHR: Heathrow Airport Limited, Local air quality strategy 2011-2020, 
excluding brake and tyre wear; CGK: Khardi, S. & Kurniawan, J., 2013, Modeling of aircraft pollutant 
emissions of LTO cycles around Soekarno Hatta International Airport, ESAIJ, 8(1), 22-34; HKG: 2012 Hong 
Kong government press release LCQ12: Air pollutant emissions from aircraft; DEN: Denver airport emissions 
inventory, 2005 (projections to 2013); FRA: Fraport abridged environmental statement, 2016; IST: Sen, O. & 
Durmus, O., 2017, Air pollution caused by aircrafts in 2016 at Istanbul Atatürk airport, EGU general assembly 
2017; JFK: Port Authority of New York and New Jersey, 2015 GHG and CAP emissions inventories. 
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DimensionsAndSystemParameters.csv. Output grids giving the resulting annual average 
concentration of primary NO2 and PM2.5 from aircraft engines are written out to 
DispersionData_RunID.csv in the model output directory. The output grid is centred on the 
latitude and longitude values for the airport in AirportData.csv with the y axis aligned North-
South, as with the original RDC code output. Figure 22 shows sample outputs for the top 16 
airports by scheduled passenger traffic in 2015. The differences between these airports arise 
from several sources. First, local emissions totals differ based on fleet composition and typical 
delay (as shown in Figure 21) and are not necessarily higher at an airport with more 
passengers. Second, airports vary in physical extent, depending on how long and widely-
spaced their runways are. Third, different airports have different meteorological conditions, 
including wind speed, direction, height of mixing layer etc., which affect the size of high 
emissions concentration areas and how those concentrations decay over time.  

 
Figure 22. Sample dispersion modelling for the top 16 airports by passenger traffic in 2015: 
annual average concentration of primary NO2 from aircraft engines. 

Emissions distributions generated using the RDC can be compared to literature ones in several 
ways. First, Yim & Barrett (2014) report a validation study on the original RDC code in which 
14 airports were modelled using both the RDC and AERMOD with the same data inputs. They 
found differences in model outputs of around 5%, for a significant reduction in run time. 



Second, we can compare outputs to other estimates of emissions concentrations due to 
airports. Heathrow Airport’s Air Quality Strategy (2011) presents modelled contours for NOx 
concentrations due to airport sources. Although not directly comparable to our modelling 
(the Heathrow contours are for NOx from all airport sources and use input meteorological 
data from a different year), the absolute concentration values are similar to ours. For 
example, a 30 µg/m3 contour in NOx is roughly equivalent to a 4.5 µg/m3 contour in primary 
NO2; we observe these contours a similar distance from the runway to those in the Heathrow 
report. Finally, ACI (2010) carried out a study looking at the impact of emissions 
concentrations around European airports of the period during the 2010 volcanic ash crisis 
when operations were sharply reduced. Because of the short time period of this reduction, 
the study was unable to draw firm conclusions at many airports. However, it did find a 
reduction in NOx concentrations of approximately 1/3 at Heathrow Airport on-airport 
monitoring sites, corresponding roughly to a drop of 30 µg/m3. As noted above, this is similar 
to the values found here. It is also notable that no corresponding reduction was seen at off-
airport monitoring sites, i.e. fluctuations due to reductions in air traffic were indistinguishable 
from fluctuations from other sources in background concentrations.  
 
It should be noted that the RDC is not a chemistry transport model and can only calculate the 
distribution of primary emissions from aircraft engines. Therefore it does not account for 
secondary PM or ozone. It also does not account for background concentrations or other 
emissions sources such as local roads. Because of these limitations, it is more useful for 
looking at changes in concentrations rather than absolute values and, where detailed 
concentration values are required, an external chemistry transport model should be used.  
 
The dispersion model code is located in run_DispersionModel_v2.java. It uses input 
meteorological data by airport from the file MeteorologicalData.csv, and airport layout data 
from the file AirportGeography.csv. By-airport local emissions totals are reported in the 
output file AirportData_RunID.csv and grids of modelled yearly average concentrations in the 
file DispersionData_RunID.csv. Because of its data requirements, the model is typically only 
run for a subset of airports. Meteorological and layout data is currently available for the top 
20 airports plus a subset of smaller airports (including AMS, BOS, LGW, STN, SYD) and is filled 
in with dummy data for all other airports. Setting the variable RunGeog in AirportData.csv to 
1 will run the RDC yearly for a given airport. The RDC was originally developed by Steven 
Barrett (sbarrett@mit.edu).  
 
 
3.6.2 Noise 
 
The Noise Module (RANE/SINE) is a rapid, standalone noise model which can take AIM output 
as input and produces airport-level noise metrics. Two approaches can be used. Currently, a 
range of single-metric noise indicators are integrated into the code. Each takes as input the 
historical and projected noise certification level of aircraft per size class and year (and region 
in the case that technological trajectories diverge per region) in terms of EPNdB (LLTO). For 
historical manufacture years this is read in from the input data file NoiseCertificationData.csv. 
Separate data for sideline, flyover and approach noise are used. For future years users can 
choose a per annum rate of improvement for all aircraft (the user specified variables 
noiseTrendSideline, noiseTrendFlyover and noiseTrendApproach) if the technology choice 



model is not being run, or use specified changes in noise per technology from the technology 
characteristics file (TechnologyMeasureData.csv) if it is being run; see Section 6 below for 
more information on the variables in this file. Note that only one of these methodologies 
should be chosen, or there will be double-counting on improvements. 
 
These metrics generated per airport include: 
 

• The Single Index of Noise Energy (SINE) metric (Torija et al. 2016). To calculate this 
metric, the sound exposure level (SELLTO) is estimated for aircraft in each age cohort 
and size class using each airport, using a linear regression analysis with the EPNdB 
certification levels of each cohort. For each individual aircraft of manufacture year y 
and size class s this is converted into a sound intensity parameter using the equation 

𝐼«qt,d: = 	
𝑃)/. 10s­{«®¯°,h>/+)y

𝑍  

where P0 is the reference sound pressure (2 . 10-5 Pa) and Z is the acoustic impedence 
(400 N s/m3). The SINE parameter is the sum of this sound intensity parameter over 
the entire fleet operating at an airport m, i.e.  

𝑆𝐼𝑁𝐸O =³ 𝑁Od:𝐼«qt,d:
d,:

	 

where Nmsy is the number of aircraft operations of size class s and manufacture year 
y at airport m. We apply these equations separately for departure and approach 
operations, treating the departure EPNdB certification level as the average of sideline 
and flyover certification levels. The SINE metric output in the airport data file is the 
sum of departure and approach values for each airport. SINE has been historically 
used for projecting changes in aviation noise with different air traffic demands and 
technology improvements.  

• The LkAeq metric (Torija et al 2016b). This is a noise and number (NNI) type metric in 
dBA (i.e. frequency-weighted dB) which is also derived from the SELLTO,sy values 
generated above. It is similar in definition to LAeq, which gives the equivalent annual 
sound level of aircraft noise. However, an additional weighting is given to the number 
of noise events using the input k parameter, by default set at 15 compared to 10 for 
LAeq. A full description of how it is derived is given in Torija et al. (2016b). An overview 
of LAeq and NNI metrics is given in Jones and Cadoux (2009). 

• The Quota Count (QC) metric. This is a weighted measure of how many aircraft above 
a set of certificated EPNdB thresholds use the airport (shown in Table 3). More 
information about quota count is given in White et al. (2003).  

The single noise metric approach can be applied for all airports and does not need information 
on flight routes.  
 
Table 3. Thresholds and classification level for the Quota Count metric, adapted from 
White et al. (2003). 

Qualifying 
Level, EPNdB 

< 87 87-90 90-92.9 93-95.9 96-98.9 99-
101.9  

> 101.9 

QC 
Classification 

0.25 0.5 1.0 2.0 4.0 8.0 16.0 

 



 
Additionally, AIM outputs can be used with the RANE model (Torija et al. 2017), a rapid model 
for the computationally efficient generation of noise contours. This model, which is not 
currently integrated into the main AIM code but is planned to be integrated in future, requires 
some extra data per airport. In particular, information about airport layout and runway usage 
(as also used for the dispersion model) and typical flight routes into and out of the airport is 
needed for detailed contours. These data are only available for selected airports at the 
moment but could be obtained, for example, from radar track data for the airport. More 
information on this model can be found in Torija et al. (2017). Southampton University is 
responsible for this model; for further information contact Antonio Torija Martinez 
(A.J.Martinez@soton.ac.uk). It is anticipated that the RANE noise approach will be the next 
component to be integrated into AIM and at that point this documentation will be updated 
to include model implementation and validation details. 
 
Note that currently AIM can be used to model some future technologies with substantially 
different noise footprints which may require extra data to be run with this module, for 
example open rotor engines.   
 
3.6.3 Population Impacts Model 
The population impacts model is a standalone add-on to AIM which takes AIM and noise 
model outputs, including pollutant concentrations and noise contours, and matches them to 
global population distribution data which can then be used to derive health impacts and 
related metrics. The current version uses ArcGIS, so users who wish to use the population 
impacts model to analyse AIM output will need a license to run ArcGIS; however, a version 
using R, which is freely available, is under development. Example output for Sydney airport 
is shown in Figure 23. For further information contact Joanna Kulsezo (j.kulsezo@ucl.ac.uk). 
 



 

Figure 23. Sample output of the population impacts model for Sydney airport. 

3.7 Regional Economics Module 
 
A regional economics module has been developed which uses a metamodel of airport 
economic impact studies to estimate per-airport employment, GVA, income and TBR impacts 
of changes to the aviation system. This model is currently at the validation stage and will be 
added to this documentation as soon as validation has been completed. More information on 
the costing of externalities is given in Wadud (2009).  For further information contact Andreas 
Schäfer (a.schafer@ucl.ac.uk). 
 
4. Future Scenarios 
 
To use the model to predict future demand we need scenarios which project key input 
variables into the future. These can be supplied as user input, or you can use the scenarios 
which are already supplied with the model. In the simplest case, using regional trends only 
and not modelling electric aircraft, four variables are needed: 
 

• Projected population between 1990 and 2100, as a ratio with population in 1990, by 
world region (North America, Central America/Caribbean, South America, Europe, 
Middle East, Africa, Asia/Pacific). Historical values between 1990 and 2015 from 
Summers et al. (2016) are included in the default scenarios supplied with the model. 

• Projected GDP per capita between 1990 and 2100, as a ratio with GDP per capita in 
1990, by world region (as above). Historical values between 1990 and 2015 from 
Summers et al. (2016) are included in the default scenarios supplied with the model. 



• Projected, constant-price oil price between 1990 and 2100, as a ratio with oil price in 
1990. This is specified by world region but usually the same value is used globally; 
however, different values can be used if substantial differences in the price paid per 
region are anticipated.  Historical values between 1990 and 2015 are included in the 
default scenarios supplied with the model. 

• Projected carbon price per region, absolute values, in year 2015 US dollars per tonne 
of carbon (not CO2, i.e. converted using tonnes_C/tonnes_CO2 = 12 / (12 + 16 + 16)), 
if modelling carbon trading (otherwise set to 0). 

If modelling electric aircraft, two additional variables are needed: 
 

• The projected carbon intensity of electricity generation as a ratio with the value in 
1990, by world region (as above). Historical values between 1990 and 2015 are 
included in some of the default scenarios supplied with the model9, depending on 
whether the free or non-free databases are used. 

• Industrial electricity price (constant-price) as a ratio with the value in 1990, by world 
region (as above). Historical values between 1990 and 2015 are included in some of 
the default scenarios supplied with the model, depending on whether the free or non-
free databases are used.  

If data is available, it is possible to specify all of these variables at a much finer level. Currently 
we use country-level data where available in the supplied scenarios. It is also possible to 
specify smaller region-level data, down to the individual city-level, if required. This works as 
follows: 
 

• Global regions are always specified in the input data. For variables which are broadly 
global (e.g. oil price) a single global trend may be specified (world region 0). Otherwise, 
the world regions used are numbered 10-16 (North America = 10, Central 
America/Caribbean = 11, South America = 12, Europe = 13, Middle East = 14, Africa = 
15, Asia/Pacific = 16) and are sometimes also referred to with region codes (NA, CA, 
SA, EU, ME, AF, AP with subscript _REG). In the absence of any other data, trends for 
a given city and/or airport are assumed to follow the regional trends. Airline fleet 
decisions are also assumed to be made on the basis of typical region-level costs, as 
airlines will typically operate across different countries within a region. The region 
each country is in is specified in the file CountryData.csv. 

• Countries are numbered from 100 to 100 + Ncountries, where Ncountries is the number of 
countries in the database and may vary depending on the base year dataset. They may 
also be referred to by their two-letter ISO country code. If input scenario data is 
specified at a country level, this is used in preference to the regional-level data apart 
from when assessing fleet decisions, as discussed above.  The numbering for each 
country is given in the file CountryData.csv. 

• In the file CityData.csv it is also possible to specify a further region code for each city, 
LocalRegion, with separate forecasts (currently dummy values are set which are 
unique to each city). For example, previous runs with AIM using UK-based forecasts 
specified population and GDP per capita growth rates in England, Scotland, Wales and 

                                                        
9 Note that these values in the non-free database are derived from IEA data and hence users must have a 
license for this data to use this input. 



Northern Ireland separately. For this, LocalRegion in CityData.csv was set to 1001, 
1002, 1003 and 1004 respectively, and trends in ScenarioData.csv were specified for 
regions 1001, 1002, 1003 and 1004. Where data is specified by local region, this is 
used in preference to country-level data apart from when assessing fleet decisions, as 
discussed above. 

A recent range of scenarios for future GDP and population is available from O’Neill et al. 
(2013). These scenarios, SSP1-SSP5 in Figure 24, were developed for the IPCC fifth assessment 
report and cover a wide range of internally consistent futures. We use these scenarios in the 
supplied ScenarioData.csv file for population and GDP per capita trends. For oil prices we use 
fossil fuel price projections from DECC (2015; panel (c)). We use the central oil price projection 
with scenario SSP2. We pair the higher GDP growth scenarios, SSP5 and SSP1, with the DECC 
low oil price projection, to obtain scenarios in which we would expect particularly rapid 
growth in aviation demand. Similarly, we pair SSP3 and SSP4, which have the lowest GDP 
growth, with the high oil price projection, to make scenarios in which we would expect low 
growth in aviation demand and emissions. 
 



 
Figure 24. Model input scenario data. 

These scenarios without carbon price input are referred to as base scenarios in the scenario 
data file (see the variable ScenarioName). For example, Scenario 1 is called SSP1base and uses 
the SSP1 population and income trends, DECC low oil price, and zero carbon price. Scenario 2 
is called SSP2base uses the SSP2 population and income trends, DECC central oil price, and 
zero carbon price. These scenarios are also available with different carbon price trends, as 
shown in panel (d) of Figure 24. For example, Scenario 6 is called SSP1_cprice1 and includes 
the same variables as SSP1base but with the Level 1 carbon price trends shown in Figure 24. 
The other scenarios in ScenarioData.csv follow the same naming convention. 
 
Currently, the same trends for carbon intensity of electricity generation and electricity price 
are included with all scenarios. These are intended to reflect a slow transition to greater use 
of renewables in the electricity sector. Prices trend linearly from year-2015 actual values by 
country towards a value of 5 US cents per kWh (in year 2015 cents) by 2100. The carbon 
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intensity of electricity generation is assumed to decrease by three percent per year from 
current values by country. Examples of the trends used can be seen in the bottom two panels 
of Figure 24. Note that in the free database supplied with the model only a single global trend 
for electricity carbon intensity and electricity prices is included per scenario, because the 
country-level data makes use of non-free (IEA) data.  
 
As discussed in Dray et al. (2019), the baseline input scenario data has a strong impact on the 
final model outcomes. In particular, projected GDP/capita is perhaps the largest source of 
variability in projected emissions and demand, absent transformational change in the aviation 
sector, and this also interacts with uncertainty in income elasticities (e.g. Intervistas, 2007).  
Ideally any policy option evaluated in AIM should be assessed under multiple different 
scenarios.  
 
5. Model validation and baseline projections 
 
Model validation can take several forms. It may include validation of the model input data; 
validation of the assumptions and/or functional forms within the model; and testing the 
model output data against real-world outcomes. As the sub-models, their input data and 
assumptions have already been extensively tested (see discussion and individual references 
above for each model), we concentrate on the third form of validation. This section is based 
on the validation analysis and baseline projections carried out in Dray et al. (2019). To validate 
the integrated model, we use two approaches. First, we take a hindcasting approach to test 
its predictive power: using a 2005 base year dataset, we project demand from 2005 to 2015 
and compare to actual 2015 values. Second, we use a 2015 base year and look at how this 
model matches to 2015 data, how it projects demand and emissions into the future, and how 
sensitive it is to key input variables.  These approaches are separate to the validation 
processes for individual model components, which are discussed in the sections above and 
the references for each component cited above.  
 
5.1 2005 base year projections to 2015 
 
We use 2005 base year data from the previous version of AIM (e.g. Dray et al. 2014), 
recalculated where necessary to accommodate the new models and increased range of 
aircraft size classes. For projecting into the future, the model requires estimates of population 
and income growth and oil and carbon prices. For the 2005-2015 period we source these 
values from Summers et al. (2016) and IEA (2016), on a country-level basis.  Modelled 
passenger enplanements and revenue passenger-kilometres (RPK) are shown in Figure 25, 
compared to observations from World Bank (2016). 



 
Figure 25. Enplanements and RPK from the 2005 base year hindcasting model. 

Running AIM with 2005 base year data predicts 2015 total demand well. For example, 
projected global enplanements are 3,631 million compared to an actual value of 3,441 million, 
a difference of just over five percent. The model also projects the larger growth in long-haul 
travel compared to short-haul. Average regional growth rates are broadly as expected (Figure 
7 (c)); for example, ICAO (2016) give year 2015 RPK totals for the North American and Asia-
Pacific regions as 1,629 billion and 2018 billion respectively; we project 1,651 billion and 2,399 
billion, a difference of 1% and 18% respectively. The small peak in modelled demand in 2015 
reflects the large variations in oil price over the 2014-2016 time period and their impact on 
modelled ticket prices. We do not model the impact of hedging on airline fuel costs or time 
lags between fuel price rises and ticket price rises, both of which will act to smooth out the 
impact of fluctuations in the oil price over time. 
 
In Figure 7 we compare the actual and modelled flight networks for 2015. The upper-left hand 
panel shows the 2015 network modelled by the 2005 base year model, in comparison to the 
modelled network in 2005 (lower left-hand panel), the 2015 base year model in 2015 (upper 
right-hand panel) and actual network in 2015 (lower right-hand panel). Although overall total 
demand is at a similar level, the 2005 base year model tends to concentrate more demand on 
busy routes than the actual 2015 network, particularly in Asia and South America. This may 
be a consequence of the network model used; although we allow passengers to shift between 
different itineraries, we currently do not allow airlines to add new segments to the network. 
This means the model does not catch the opening up of new routes, instead routing these 
passengers via hubs on existing routes10.  

                                                        
10 The addition of new direct routes when projected OD demand exceeds a given threshold (for example: the 
equivalent of two flights a day using typical equipment for the segment distance) is a likely addition in the next 
AIM update. Our analysis of schedule data between 2000 and 2015 shows that around 20% of passengers in 
2015 are travelling on routes that did not exist in 2000, i.e. network development can have a significant impact 
over the long term.   
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Figure 26. Modelled and actual flight networks. 

 
5.2 2015 base year model 
 
We obtain 2015 base year data from a variety of sources; major data sources include Sabre 
(2016) for schedule and passenger demand-related data, BTS (2017) for airline cost data, 
FlightGlobal (2017) for fleet data, RDC (2017) for en-route and landing charges, FlightStats 
(2016) for data on passenger delays and ICCT (2019) for freight load factors by region-pair. 
Figure 26 shows the model base year flight network in comparison to actual values. A 
comparison of the year 2015 base year model airport demand to observations was also made 
in Figure 2. We project base year global scheduled passenger enplanements and RPK of 3,400 
million and 6,200 billion respectively, within 2.5% and 1% of the actual values (ICAO, 2016).   
 



 
Figure 27. Enplanements, RPK, average system fare, fleet, fuel use and direct CO2 emissions 
for the grid of model runs over baseline scenario, carbon price and technology lens for the 
world aviation system. 

 
To use the model to project demand into the future, we use the scenarios discussed above in 
Section 4. Note that the scenarios run here differ from those supplied in the data input file in 
that SSP1 and SSP4 are paired with the DECC central oil price, although it is easy to reproduce 
input for these scenarios in the scenario input file if required. The baseline input scenario data 
is one source of variability in the final model outcomes.  Another is the application of policy 
levers to the future system. Panel (d) in Figure 24 shows a range of hypothetical global carbon 
price scenarios, which we use to assess the model’s response to increasing the airline cost of 
carbon emissions. A third source of variability in the outcomes is uncertainty in the model 
input parameters. As discussed in Section 2.8, for uncertainty in the characteristics of future 
technology measures we use a lens approach11, with a central lens using mid-range 
characteristics plus two additional lenses chosen to reflect futures in which it is particularly 
easy or difficult to reduce emissions using technology. We omit the electric aircraft in these 
runs as at the time of validation only speculative parameters were available for a single size 
class.  
 
To assess the variability in model outcomes absent any radical societal, technological or 
operational change, we therefore carry out model runs on a grid over SSP scenario, 
technology lens and carbon price scenario. The global-level results are shown in Figure 27. 
The grey bands beneath each line show the range of variability due to technology lens. For 
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clarity, we show only the baseline (zero carbon price) and Level 3 carbon price runs, over the 
full range of baseline scenarios.  
 
Panels (a) and (b) of Figure 27 show enplanements and RPK in comparison to historical data 
from World Bank (2016). Panel (c) shows global system average passenger fare per RPK, in 
comparison to historical passenger revenue per RPK data from ICAO (2007, 2016; note as 
discussed in Section 3.1.3 that we do not expect these numbers to be exactly equal). Fare 
trends largely reflect the underlying trends in fuel cost and passenger numbers. Increasing 
passenger numbers allows airlines to take advantages of economies of scale, reducing ticket 
prices. Therefore average modelled fares initially fluctuate as fuel prices change, and then 
gradually decrease once the input oil price stabilises (panel (c) of Figure 27). Panel (d) shows 
the global fleet over all size classes compared to historical fleet data from FlightGlobal (2016). 
As discussed in Section 3.2.1, the fleet model initially over-predicts total fleet but adjusts to 
more feasible values over around a five-year period. This is the result of our assumption that 
for each size class and world region, aircraft are stored rather than directly retired if supply 
temporarily exceeds demand. Panels (e) and (f) show fuel use and emissions, in comparison 
to past data from all aviation sources from IEA (2017). As we model only scheduled passenger 
traffic, we expect the model to produce lower base year fuel use and emissions than the 
observed values for all aviation. In particular, as discussed in Section 2, freight in 2015 
accounted for around 24% of global aviation tonne-km performed (ICAO 2016). We take 
account of hold freight in passenger aircraft when modelling aircraft weight load factor, but 
do not account for dedicated freighter aircraft, which carry around 40-50% of air freight (FTA 
2008). Unscheduled passenger flights accounted for 5% of global RPK in 2015 (ICAO 2016), 
and military aviation has been estimated to be around 7-13% of aviation fuel use (Wilkerson 
et al. 2010; ICCT, 2019). For the runs carried out in Dray et al. (2019) we also omit the impact 
of non-lateral fuel use inefficiency, as discussed in Section 3.3. Therefore we expect our base 
year totals to be approximately 20-30% below the IEA totals, as observed.  
 
Several outcomes are apparent from the projections of future trends. First, there is a large 
range of variability in aviation outcomes by 2050. Although demand grows in all scenarios, 
the projected year 2050 global RPK ranges between 12,150 billion and 40,660 billion, 2 and 
6.6 times the year-2015 values respectively. Considering only central lens, zero carbon price 
scenarios, the highest-RPK scenario in 2050 has 3.1 times the RPK of the lowest-RPK one. If 
considering all scenarios, this ratio is 3.4, i.e. the most important source of the variability in 
outcomes is the scenario used for future trends in socioeconomic variables. 
 
The impact of uncertainty in future technology characteristics is somewhat smaller in these 
runs, with, e.g. the SSP2 high and low lens scenarios differing by 5.4% in year 2050 RPK and 
26% in year 2050 fuel consumption. This is partially an outcome of the relatively short time 
horizon: the technologies with the biggest impact on emissions per RPK are typically new 
aircraft models, which take a long time to percolate into the fleet.  Technology characteristics 
which are uncertain include fuel use and cost; their impact on enplanements and RPK results 
from the impact these variables have on ticket prices and hence demand.  
 
Carbon price also has a relatively limited impact at the levels modelled in this paper. Lines in 
light grey show scenarios in which the highest carbon price shown in Figure 8 is applied 
globally, reaching 150 dollars per tonne of CO2 by 2050. This results in reductions in fuel use 



and emissions of around 4-16% across scenarios. This is a relatively high carbon price: for 
example, the highest carbon price in the EU emissions trading scheme to date occurred in 
2008 and was equivalent to around 36 (year 2015) dollars (European Climate Exchange, 
2017). However, it has little effect on fares and demand compared to the baseline scenario. 
For example, for an Airbus A320 flight of 2,000 km with an 0.7 load factor, around 0.18 tCO2 
per passenger is emitted; therefore the cost to the airline per passenger for this flight is 
around 27 dollars. However, the ticket price elasticity for changes in fuel-related costs is 
typically close to 0.3 (Wang et al. 2017). This gives a fare per RPK increase of only around 0.01 
dollars at base year fuel prices, as shown in Figure 27.  
 
These scenarios can also be compared to other projections. Airbus (2016) project average 
demand growth over the 2015-2035 period of 4.5% per year in RPK, resulting in 32,000 new 
passenger aircraft of 100 or more seats by 2035 over the 2015-2035 period, around 20,000 
of which are to serve new growth rather than replacing retiring aircraft.  Boeing (2016) predict 
average global growth in RPK of 4.8% per year over the same time period, with fleet growth 
of around 23,000. We project average yearly demand growth of between 1.8% and 5.6% per 
year over this time period, with the central SSP2 scenario having a 3.8% growth rate; around 
13,000 to 40,000 new aircraft of 100 or more seats would be needed to serve new growth 
over this time period, with the central SSP2 scenario requiring 25,000 new aircraft. Although 
the Airbus and Boeing projections are broadly central in these ranges, we typically project a 
larger requirement for aircraft per RPK, most likely because we project a slightly smaller 
average aircraft size.   
 
6. Running the model 
 
AIM is suppled as java code. It is cross-platform and the main code has no dependencies.  
However you will need to install java and a program that supplies a java compiler to compile 
and run it. We have tested AIM on Mac, Windows and Linux systems and have been able to 
run the model in each case. At least 8GB memory and several GB of disk space is preferable, 
depending on the number of model runs required and the type of data that the model is set 
to output.  
 
Model run time is usually around one-three hours for a run from a 2015 base year to 2050, 
depending on the scenario, output and policy options chosen (further from baseline may take 
longer to converge, running to a later end year will take longer, producing inventories and 
dispersion modelling will take longer).  
 
Currently, there are two versions of the year-2015 base year databases. The original version 
of the databases used some confidential data in the input passenger, fare, aircraft movement 
and scenario data variables for model initialization and calibration. Because we anticipate 
model users will not always have access to licenses for this data, we have produced a set of 
alternate databases for the model which do not contain this data, but instead initialize these 
variables from a set of baseline estimates from sub-models within AIM. These databases are 
freely available with the model but produce less accurate base year estimates on an individual 
route basis. However, system-wide aggregate totals (for example, RPK and CO2) are typically 
reproduced to within 2% of the values with the non-free databases. 
 



To run the model, it first needs to be complied. Any recent java compiler should be suitable 
for compilation. For example, the Java Development Kit (JDK), which is a free download from 
Oracle (see e.g. http://www.oracle.com/technetwork/java/javase/downloads/index-jsp-
138363.html), contains the compiler javac. In MAC OS X or Linux, opening a terminal, 
navigating to the main AIM code directory (v9) and typing ‘javac –classpath . 
AIMModel_v9.java’ should compile the whole program. Another option is to use a GUI-based 
development environment such as NetBeans (https://netbeans.org), which is also a free 
download.  
 
To run the model, you will first need to set the input parameters for the runs that you want 
to carry out. This includes, e.g. specifying the socioeconomic scenario to project demand 
into the future (Section 4) and any policy and technology options to include.  The main user 
input file is AIMRunParameters.csv, in the code root directory (v9). The parameters in this 
file and typical input values are discussed in  
Table 4, below. You may also want to change some values in the other model database files, 
for example to run only a subset of cities or a different set of technology options (discussed 
in Appendix 8). These files are stored in directories corresponding to the model base year, 
e.g. v9/data_2015baseyear for year 2015 base year data and v9/data_2005baseyear for 
year 2005 base year data. The files and variables that users may want to edit are described 
below in Section 6.2. 
 
Once the input values are set, the model can be run. Assuming java is installed, on Mac OS X 
and Linux this can be done by typing ‘java AIMModel_v9’ in the terminal (in the code root 
directory, v9). If using NetBeans or a similar development environment, the option to run the 
code should also be prominently available (e.g. ‘Run’ button in NetBeans). The ‘verbose’ 
variable in AIMRunParameters.csv sets the amount of information (about convergence and 
what is running at any given time) that the program prints out as it runs. Output location is 
determined by the ‘RunID’ variable in AIMRunParameters.csv: the model creates a directory 
output/RunID for each model run (note that this means rerunning a model with the same 
RunID will overwrite the output from the first run). The model output data files are described 
in Section 6.3.  
 

6.1 Code Structure 
 
The structure of the model code is not identical to the broad model structure diagram 
shown in Figure 1. The code structure is shown in Figure 28. This code is located in the code 
root directory (v9). Object definitions for storing different types of input data are included in 
the directory v9/datastructures. All routines are extensively commented including 
definitions of input and output parameters. The code comments are probably the best place 
to find the definition of a given variable, its dimensions and units.   



 
Figure 28. Code structure, AIM 2015 v9. 

6.2 Input data 
 
The main user input file is AIMRunParameters.csv, in the main directory. This file contains a 
selection of variables that affect how the model is run, e.g. which socioeconomic and 
technology scenarios to run, which year to run to, and how the cost-effectiveness of new 
technologies is assessed. Each line in the file gives parameters for a single model run. The 
variables are as follows: 
 

Table 4. AIM model, main user input variables  

Variable Name Description Typical values 

RunNumber Gives an ID number for each run (for user 
reference only) 

1,2,3, etc. 

RunID The name of the run. This is used to name 
the run output directory and individual 
output files, to distinguish them from the 
output of other runs. If two model runs 
have the same RunID, the second one will 
overwrite the output of the first.  

Text value, e.g., 
ScenarioSSP2_NoNewTech 

DataInputDirectory Directory in which to look for the model 
input databases. 

By default this is 
data_2015baseyear 

SocioeconomicScenario The scenario to run for population and 
income. A number of scenarios are 
supplied with the model, based on the 

The name of the scenario, e.g. 
“SSP2”. The names and numbers 
of scenarios are given in the data 
file ScenarioData.csv: see also 



IPCC SSP scenarios, and more can be 
added as required (see Section 4). 

Section 4 for the input variables 
used in each scenario.  

UrbanisationScenario A corresponding scenario to run for 
urbanisation, which is applied only to 
cities and not to airport groups in rural 
regions. A scenario based on the UN 
World Urbanisation Prospects is supplied 
with the model, and more can be added 
as required (see Section 4).  

The name of the scenario, e.g. 
“UN_WUP”. The names and 
numbers of scenarios are given in 
the data file ScenarioData.csv: 
see also Section 4 for the input 
variables used in each scenario. 

OilPriceScenario A corresponding scenario to run for oil 
price. Scenarios from DECC (2016) are 
supplied with the model, and more can 
be added as required (see Section 4). 

The name of the scenario, e.g. 
“DECC_MID”. The names and 
numbers of scenarios are given in 
the data file ScenarioData.csv: 
see also Section 4 for the input 
variables used in each scenario. 

CarbonPriceScenario A corresponding scenario to run for 
carbon price. Test scenarios from Dray et 
al. (2018) are supplied with the model, 
and more can be added as required (see 
Section 4). 

The name of the scenario, e.g. 
“BASE”. The names and numbers 
of scenarios are given in the data 
file ScenarioData.csv: see also 
Section 4 for the input variables 
used in each scenario. 

CarbonIntensityOfElectricity 
GenerationScenario 

A corresponding scenario to run for the 
carbon intensity of electricity generation. 
Only makes a difference to model 
outcomes if modelling electric aircraft. 
Test scenarios are supplied with the free 
database, and more can be added as 
required (see Section 4). 

The name of the scenario, e.g. 
“EMF27_FULLTECH”. The names 
and numbers of scenarios are 
given in the data file 
ScenarioData.csv: see also 
Section 4 for the input variables 
used in each scenario. 

ElectricityPriceScenario A corresponding scenario to run for 
electricity prices. Only makes a difference 
to model outcomes if modelling electric 
aircraft. Test scenarios are supplied with 
the free database, and more can be 
added as required (see Section 4). 

The name of the scenario, e.g. 
“BASE”. The names and numbers 
of scenarios are given in the data 
file ScenarioData.csv: see also 
Section 4 for the input variables 
used in each scenario. 

BiofuelCharacteristicsScenario A corresponding scenario to run for 
aviation drop-in biofuel lifecycle 
emissions and maximum supply to the 
aviation sector. These are only used if the 
biofuel model selected is one which 
needs scenario input: see 
BiofuelModelToUse, below. 

The name of the scenario, e.g. 
“EMF27_FULLTECH”. The names 
and numbers of scenarios are 
given in the data file 
ScenarioData.csv: see also 
Section 4 for the input variables 
used in each scenario. 

TechDataFile Gives the file (in DataInputDirectory) to 
use for future technology characteristics. 
Different technologies can be turned on 
or off for different aircraft size classes in 
this file. Therefore it is possible to use 
different input files here to create 
different technology futures (e.g. with or 
without electric aircraft, with or without 
blended wing body aircraft,etc.) 

The default input file is 
TechnologyMeasureData.csv. 
See Section 3.4.3 for more detail. 

TechScenario To account for the high uncertainty in 
some technology characteristics we use a 
lens approach. Three lenses are available: 
one in which all technology 
characteristics are mid-range (2), one 
with pessimistic characteristics (late 

0 to turn off the technology 
adoption model (in this case use 
the fuel and NOx trend variables 
specified below to model the 
impact of future technology 
changes). 1, 2 or 3 for the 



availability date, high cost, low benefit; 1) 
and one with optimistic characteristics 
(early availability date, low cost, high 
benefit; 3). This variable allows you to 
choose the technology characteristic lens 
for this run. 

technology adoption model with 
pessimistic, mid-range or 
optimistic characteristics.  

BiofuelModelToUse This specifies what the characteristics of 
any drop-in biofuel should be (see 
Section 6.3 and Appendix 7 for 
information on the biofuel characteristics 
input).  

0 to exclude biofuel. Otherwise 
set to the ID number of one of the 
options in the file 
BioFuelCharacteristics.csv (in 
DataInputDirectory) to use those 
fuel characteristics (e.g. 1, 2, 3). 

CapScenario The scenario for how airports respond to 
constrained future capacity when 
demand is rising. For the current version 
of AIM we recommend setting this to 1. 
This assumes that airport capacity will 
generally expand as required at a rate 
that maintains present-day delay levels. 

1 

EarlyRetirementScenario If > 0, mandates aircraft retirement after 
a specific age. This option does not 
provide any extra incentive for airlines to 
do this – retirement is assumed to be 
mandatory.  

0 to not use this option 
1 for early retirements from age 
30, 2 from age 25, 3 from age 20. 
This can be used in parallel with 
the technology lenses, above.  

EndYear The year to run the model to. Needs to be 
at or higher than the base year. The 
maximum EndYear without extending the 
scenario input data is 2100. 

Typically between 2015 and 
2100, e.g. 2050. Later EndYears 
are subject to greater levels of 
model uncertainty. 

MakeInventories Specifies whether the model should 
output detailed emissions inventories 
(i.e. grids of fuel use, NOx and PM by 
latitude, longitude and altitude) or not. 
Inventory files are large (around 
20MB/year) and generating them will 
add a few minutes to the run time of the 
model, so if not needed this option 
should be turned off. 

0 to not output inventories. 
1 to output just the base and end 
year inventories. 
2 to output base and end 
inventories plus one inventory 
per decade (e.g. 2020, 2030, 
2040). 
3 to output inventories for all 
years. 

AmortizeTimeframe_years This gives the timeframe over which 
purchasing decisions in the stock and 
technology models should be evaluated 
when using NPV, in years.  

Currently we use 7 years for this 
value. 

AmortizeDiscountRate_percent The discount rate to use when evaluating 
purchasing decisions using NPV, in 
percent.   

Currently we use 10 percent for 
this value. 

PaybackTimeframe_years The timeframe over which to evaluate 
purchasing decisions that are made on a 
payback period basis, in years.  

Currently we use 3 years for this 
value. 

GlobalExtraKMTax Allows the user to specify a global extra 
per-km tax on airline tickets, in year 2015 
US dollars, applied after the base year. 

Default is 0. 

GlobalExtraFlightTax Allows the use to specify a global extra 
per-flight tax on airline tickets, in year 
2015 US dollars, applied after the base 
year. 

Default is 0. 

GlobalExtraItineraryTax Allows the user to specify a global extra 
per-itinerary tax on airline tickets, in year 

Default is 0. 



2015 US dollars, applied after the base 
year. 

GlobalNOxAirportCharge_ 
Year2015DollarPerKG 

Allows the user to specify a global extra 
landing charge for local NOx, in year 2015 
dollars per kg NOx, applied after the base 
year.  

Default is 0.  

UpliftFactor Gives a multiplicative factor that can be 
applied to direct aviation CO2 to simulate 
the impact of non-CO2 climate impacts. 
Typically this is set to 1.0 (i.e. no uplift) 
and the output of the climate module is 
used to more fully assess non-CO2 
impacts. 

Default is 1.0, i.e. no uplift.  

UseHSR Model the impact of future planned high-
speed rail developments, where data is 
available on them (note this is a very 
simple model, and only accounts for 
whether high-speed rail exists between 
two cities, not its characteristics). 250 
km/h is used as a cutoff point for high 
speed. 

1 to include, 0 to exclude. 

MaxBiofuelBlend Gives the maximum proportion of drop-
in biofuel that can be blended with fossil 
Jet A. This value might be set below 1 to 
simulate supply constraints or 
certification requirements, for example. 

Currently set to 0.5, i.e. maximum 
blend of 50% drop-in biofuel, 50% 
fossil Jet A. This reflects current 
certification limits (e.g. Zschocke, 
2012) 

RunCarbonTaxFleetRenewal Runs a specific policy option where early 
retirements and aircraft replacement by 
the best available new technologies is 
funded by a carbon tax (see Dray et al., 
2014). For the other input data files 
needed to run this model see Section 6.3. 

1 to run, 0 to exclude. The 
retirement years and applicable 
world regions are set in separate 
data files, see Section 6.3. Note 
that EarlyRetirementScenario, 
above, should be set to 0 when 
using this option as the policies 
are not compatible. 

FuelTrend20 If we are not modelling alternative 
technologies (i.e. TechScenario==0), we 
still need to make assumptions about 
how the fuel burn and emissions of new 
technologies change into the future. 
FuelTrend20 is the assumed percent/year 
improvement in fuel burn for new aircraft 
models between the base year and 2020.    

A value of 1.0 would give a 1.0% 
per year reduction in typical fuel 
use for new technology models. 
Set to 0.0 to avoid double- 
counting improvements if 
running with TechScenario > 0. 

FuelTrend50 As FuelTrend20, but for 2020 until the 
simulation end year. 

As FuelTrend20. Should also be 
set to 0.0 if TechScenario > 0. 

AirborneNOxYear20 As FuelTrend20, but for NOx emissions 
above 3000 feet. 

As FuelTrend20 (e.g. 1.0 gives a 
1%/year decrease in comparable-
mission airborne NOx for new 
aircraft models). Set to 0.0 if 
running with TechScenario > 0. 

AirborneNOxYear50 As AirborneNOxYear20, but for 2020 until 
the simulation end year. 

As AirborneNOxYear20. Should 
also be set to 0.0 if TechScenario 
> 0. 

LTONOxYear20 As AirborneNOxYear20, but for emissions 
below 3000 feet. 

As AirborneNOxYear20 (e.g 1.0 
gives a 1%/year decrease in 
comparable-missions LTO NOx 
for new aircraft models). Set to 



0.0 if running with TechScenario > 
0. 

LTONOxYear50 As LTONOxYear20, but for 2020 until the 
simulation end year. 

As LTONOxYear20. Should also be 
set to 0.0 if TechScenario > 0. 

NoiseTrendSideline This variable gives a yearly decrease with 
future manufacture year for the certified 
sideline noise level, in EPNL. At the 
moment we do not directly link future 
technologies to changes in EPNL, so this 
value needs to be set manually if 
projecting these metris into the future.  

A value of 1.0 would give a 1.0% 
per year reduction typical 
certified sideline EPNL for new 
technology models. 

NoiseTrendFlyover Same as NoiseTrendSideline, but for 
flyover noise. 

As NoiseTrendSideline, above. 

NoiseTrendApproach Same as NoiseTrendSideline, but for 
approach noise. 

As NoiseTrendSideline, above. 

ETSPercentGrandfathered If modelling emissions trading, this gives 
the percentage of emissions (from 
ETSBaseYear, below) which are 
grandfathered (i.e. airlines only have to 
purchase emissions allowances on 
emissions above this level). 

A value of 80 assumes that 80% of 
emissions from ETSBaseYear are 
grandfathered (i.e. airlines must 
purchase allowances for any 
emissions above 0.8 * ETS base 
year emissions). 

ETSBaseYear This gives the year to use when 
calculating grandfathering of emissions, 
see above. Note that it is assumed no 
grandfathering is applicable before 
ETSBaseYear, even if nonzero carbon 
prices are in place. 

A value of 2020 assumes 
emissions grandfathering post-
2020 is based on the 2020 
emissions level. 

RunExternalDemandProjections This variable allows users to bypass the 
internal demand model to put in external 
projections of demand. Note that in this 
case, there is no feedback between ticket 
prices and changes in demand. 

1 to run external demand 
projections, 0 to use the inbuilt 
demand model. External demand 
projections are specified by world 
region-pair and can be set in 
RegionPairData.csv in 
DataInputDirectory. 

WageGrowthModel Gives the methodology to use for growth 
in pilot/flight attendant salaries over 
time. This can make a substantial 
difference to airline costs in high GDP 
growth scenarios. 

If 0, assume salaries remain 
constant in real terms. 
If 1, assume salaries grow in line 
with GDP per capita. 

WriteOutCityData If 1, the program writes out data on a city-
pair basis (e.g. demand, fares). These are 
large files, so set to 0 if you do not need 
data at this level of disaggregation.  

1 to write city-pair data out, 0 to 
not do this.  

Verbose If 1, outputs more data to STDOUT about 
what the program is doing as it runs. 

1 for more information, 0 for less.  

 
In addition, the model requires various input data files in DataInputDirectory. These files can 
be edited if required to simulate a particular policy (e.g. changes in landing fees) but under 
normal operation users will not usually interact with them. There are several different 
versions of the data input directory files, including those for 2005 and 2015 base years, and 
(for the 2015 base year) a database that contains confidential data and one where the 
confidential data is replaced by values derived from models within AIM (i.e., instead of 
initializing fares as actual baseline values, they are initialized as baseline estimates from the 
fare model). The database version that is supplied with the model is the 2015 one without 



confidential data. The main differences between model runs with and without the 
confidential data are: 

• Base year individual route-level demand and fare may be less accurate (although they 
are still typically within 20% of actual values). 

• There may be small differences in global aggregate demand and emissions totals 
(typically under 2% in model test runs). 

• If using electric aircraft, baseline and scenario carbon intensity of electricity 
generation and electricity prices are approximate global-level values rather than 
country-level ones (note however that electric aircraft are unlikely to enter the system 
in significant numbers before 2050, by which time accuracy in baseline values will be 
less important than scenario assumptions about how these values change 2015-2050). 

• Run time can be slightly longer. 

All files are in csv format. Data read-in is done in the file initialData_v22.java and further 
explanation of the variables which are read in is given in the comments to this code. Most 
data is read into custom objects collecting together data which is specified on a similar basis: 
the code defining these objects is in the directory datastructures and the relevant object is 
given in each case below. The files are as follows: 
 

• AircraftData.csv, which contains data which is specified by aircraft size class (e.g. 
reference aircraft utilisation, crew costs, takeoff fuel etc.). This data is read into a 
DataByAircraftSize object. 

• AircraftData_params.csv, which contains parameters for the aircraft size choice 
model (Section 3.2.1). 

• AircraftPerformanceParams.csv, which contains values for the aircraft performance 
model (Section 3.4.1) to calculate fuel use and emissions for reference technologies. 
This data is read into an AircraftPerformanceData object. 

• AircraftPerformanceParamsElec.csv, which contains comparable values for electric 
aircraft, where appropriate. These values are derived from the TASOPTe model at MIT 
and were generated for the SAECA project on electric aircraft. They are also read into 
a separate AircraftPerformanceData object. 

• AircraftReplacementPolicyData_global.csv, which contains assumptions used when 
running the RunCarbonTaxFleetRenewal policy option discussed in Table 3 above. For 
each year and world region, a manufacture date before which all aircraft are retired 
is given. See also Dray et al. (2014). 

• AirportData.csv, which contains data which is specified by airport, e.g. latitude, 
longitude, base year capacity, landing fees, etc. This data is read into a DataByAirport 
object. This also contains the variable RunGeog, which determines whether the 
dispersion model is run for a given airport.  

• AirportGeography.csv, which contains layout information and dummy emissions totals 
for the majority of airports in AirportData.csv (Where there is no layout information 
available, the variable RunGeog in AirportData.csv is set to -1).  

• AirportSegmentData.csv, which contains data by airport-airport segment, e.g. base 
year flight frequency and enroute costs (either actual baseline values or, in the free 
database, estimated ones). Data is only stored for segments with nonzero demand, 
not for all airport-pairs. The data is read into a SegmentArray object.  



• AltitudeData.csv, which contains data which is specified by altitude, e.g. distributions 
of typical cruise and holding altitudes. This is read into a DataByAltitude object. 

• BioFuelCharacteristics.csv, which contains data on different drop-in biofuel options, 
e.g. year of first availability and fuel lifecycle emissions, that can be modelled using 
the input value BiofuelScenario discussed in Table 3 above and in Appendix 7. This 
includes explanatory notes about the data and its typical use.  This is read into a 
BiofuelData object. 

• BiofuelCostCurveModelData.csv, which contains data on biomass resources and costs 
for North America which can be used to model biofuel costs with a cost curve based 
on the year and amount of fuel needed – see appendix 7. The data is also read into 
the BiofuelData object if the cost curve model is in use for a given run (whether the 
cost curve model is in use or not is set in BioFuelCharacteristics.csv for each specific 
biofuel type). 

• CityData.csv, which contains data that is specified by city, e.g. base year population 
and income, list of airports, etc. This file also specifies if a subset of cities is to be run. 
If the ‘RunThis’ variable for a city is set to 1, it will be run; if 0, it will be omitted (though 
flights to and from the city may still be included if they run to or from a city which is 
being modelled). Sample files with RunThis = 1 for all cities (CityData_RunAll.csv) and 
with RunThis = 1 for North American cities only (CityData_runNA.csv) and European 
cities only (CityData_RunEU.csv) can also be provided. This data is read into a 
DataByCity object.  

• CostAndSystemParameters.csv, which contains individual parameters which affect 
cost and operational modelling (mainly estimated model parameters, e.g. for the 
delay model, but also including assumptions on aircraft scrappage, deterioration per 
year and per passenger weight). This data is read into a Params object. 

• CountryData.csv, which contains data by country, including region, assumed 
electricity price in the base year, and fixed effects parameters where specified by 
country (e.g. for the fare model). This dataset differs between the free and non-free 
versions: the non-free version contains data from IEA energy prices and taxes, so users 
should have a license for this data to use this file. However, these values are only 
needed if running the electric aircraft technology option. If not running this, these 
values can be replaced with dummy input (as in the free version). This data is read into 
a DataByCountry object. 

• DataByCityPair.csv, which contains data that is specified by city-pair (including all 
feasible city-pairs in the dataset, i.e. Ncities x Ncities). This includes base year average 
journey time, existence of a road link, etc. Estimated fare data is used for initialisation, 
and estimated demand data is used as part of the interim demand model. This data is 
also read into the DataByCity object. 

• DimensionsAndSolutionParameters.csv, which contains data on the size of various 
input datasets (e.g. maximum number of cities available to model, number of aircraft 
size classes) and data that is used in the model solution routines (e.g. maximum 
number of iterations to run, convergence tolerance). This data is also read into the 
Params object. 

• Elasticities.csv, which contains estimated parameters used in the OD demand, fare 
and itinerary choice models (section 3.1). These are currently specified by distance 
and world region-pair and are read into a matrix. 



• FleetData.csv, which contains data on total aircraft fleet by world region, size class 
and age. How we derive this data is discussed in Section 3.4.2 above. It is read into the 
DataByAircraftSize object.  

• LinkChange.csv, which contains data on which city-city ground links are projected to 
change in future, e.g. if bridges or high-speed rail links are projected to be constructed. 
This data is used in the OD demand model. This is read into a LinkChange object. 

• MeteorologicalData.csv, which contains data derived from surface and upper air 
meteorological databases per airport which describes how emissions from a point 
source would disperse under typical weather conditions. Further information on how 
this data is derived is given in Section 3.6.1. Note that currently only the top 20 airports 
and a small number of selected other airports (e.g. AMS, BOS, SYD, LGW, STN, LTN, 
PER) have this data available; currently other airports use dummy data.  

• NoiseCertificationData.csv, which contains typical noise certification level in EPNL for 
sideline, flyover and approach noise by aircraft size class and historical manufacture 
year (up to the base year).  

• PhysicalAndClimateParameters.csv, which contains individual physical and climate 
modelling-related parameters, for example the assumed density and specific energy 
of Jet A and the kg CO2 released by burning 1kg jet fuel.  This data is also read into the 
Params object. 

• RegionPairData.csv, which contains data which is specified by region-pair, e.g. 
regional cost scaling factors. This is read into a DataByRegionPair object.  

• RoutingData.csv, which contains sets of feasible (airport-airport, potentially via 
multiple hubs) routings used to get between each city-pair in the base year, and 
estimated initialisation parameters for these routes. Data for each city-pair is read into 
a RoutingData object, which are stored in a Ncities x Ncities matrix.  

• ScenarioData.csv, which contains data on future projections of population, GDP per 
capita, oil prices etc., as discussed in Section 4. Data for the user-selected scenario 
only is read into a DataByScenario object. 

• TechnologyMeasureData.csv, which contains data on alternative technologies that 
airlines can choose to adopt, e.g. the time from which they are available, any 
limitations on uptake, their impact on fuel use, NOx and PM by flight phase, etc. This 
includes new aircraft models, retrofits and operational measures. All measures can be 
turned on or off via the ‘RunMeasure’ variable. They are specified by aircraft size class 
and lens, as discussed in section 3.4.4. Data for the user-specified lens is read into a 
DataByTechnologyMeasure object. The name of the file to use here is specified in the 
user input data so that users can batch run different technology scenarios, e.g. with 
technologies of interest turned on and off, using versions of this file with different 
names. See appendix 8 for more details on changing technologies.  

6. 3 Output Data 
 
The location of model output data is governed by the user-specified variable runID, as 
discussed above. Data for a given run is written to the directory output/runID. Currently, 
model output is as follows:  
 

• AirportData_RunID.csv, which contains output data by airport. The code governing 
this output is located in the DataByAirport object code, i.e. in 



datastructures/DataByAirport.java. This contains data by airport and model year for 
airport arrivals and departures (totals and by three-hour time bin), average delays by 
location of delay, cancellations, local NOx, NO2, CO2 and PM emissions, noise metrics, 
demand for fuel by fuel type and capacity utilisation index. 

• AltitudeData_RunID.csv, which contains output data on global fuel use, distance 
travelled and emissions by 2000-foot altitude bin and year. This data is primarily used 
as input data for the global climate module. The code governing this output is located 
in the DataByAltitude object code, i.e. in datastructures/DataByAltitude.java. 

• CityData_RunID.csv, which contains output data on OD demand and modelled 
average ticket price by city-pair and year.  This is only output if requested by the user 
(variable WriteOutCityData in AIMRunParameters.csv) as, depending on the number 
of city-pairs modelled,  these files can be rather large. The code governing this output 
is located in the DataByCity object code, i.e. in datastructures/DataByCity.java. 

• CountryData_RunID.csv, which contains summary output data by country, including 
aircraft movements, enplanements, RPK, fuel use by type and CO2 emissions on 
domestic and international levels. Note that international RPK is assumed to be 
divided equally between the countries of origin and destination (i.e. metrics are 
effectively on a departing flights basis). There are multiple ways that passengers, 
flights, fuel use and emissions may be attributed to different countries, and the 
methodology chosen will affect outcomes (e.g. Dray & Doyme 2019) – if this data is 
compared against country-level data that is specified on a different basis, then the 
totals differ somewhat. The accuracy of these totals will vary by country: for example, 
in a case where a country has two airports but only one is modelled in the simulation, 
the model may significantly under-predict totals. The code governing this output is 
located in the DataByCountry object code, i.e. in datastructures/DataByCountry.java. 

• DispersionData_RunID.csv, which contains data on the projected annual average 
concentration of NO2 and PM2.5 around airports for which the dispersion model was 
run (selected by the variable RunGeog in AirportData.csv). Not output if the 
dispersion model is not run. The size and resolution of the output grid is governed by 
the variables dispXDist, dispYDist and dispDeltaDist in 
DimensionsAndSystemParameters.csv. Currently these are set to output a square grid 
up to 20km away from the airport, at 200m intervals. The code governing this output 
is in the DispersionData object code, i.e. in datastructures/DispersionData.java. 

• FleetData_RunID.csv, which contains summary output on a fleet basis, by world 
region, year and size class. This includes the fleet size, number of new aircraft, uptake 
of technology options, fleet age distribution and emissions and fuel use. The code 
governing this output is located in the DataByAircraftSize object code, i.e. in 
datastructures/DataByAircraftSize.java. 

• GlobalClimateMetrics_RunID.csv, which gives CO2e from different emissions sources 
in terms of different metrics (e.g. GWP, GTP on timescales from 50 to 500 years). The 
code governing this output is located at the end of run_ClimateMdl_v2.java. 

• Inventory_RunID_Year.csv (one file for each year for which an inventory was 
requested, see the input variable MakeInventories in AIMRunParameters.csv, above). 
This gives gridded CO2, NOx and PM2.5 by latitude, longitude and altitude, which can 
be used as input to a detailed climate model. Altitude resolution is the same as in 
AltitudeData.csv, above, i.e. 2000-foot bins. The resolution by latitude and longitude 
is specified by the variable samplRateMap in DimensionsAndSystemParameters.csv 



and by default is 1 degree by 1 degree. The code governing this output is in the file 
summaryOutput_v2.java (specifically the routine WriteInventory). Inventories data is 
calculated in run_LTOOpsMdl_v25.java (specifically the routine calculateInventory). 
These files are large and generating them is time-consuming, so they should not be 
generated if they are not needed. 

• SegmentData_RunID.csv, which contains output on a flight segment basis by origin 
airport, destination airport and year. This includes demand, load factor, flight 
frequency by aircraft size class, delay by location, route extension, emissions, fuel use 
by fuel type and effective flight frequency for some key technologies. The code 
governing this output is located in the SegmentArray object code, i.e. in 
datastructures/SegmentArray.java. 

• SummaryData_RunID.csv, which contains a wide range of global and region-level 
summary data by year. This includes RPK, OD demand, enplanements, direct and fuel 
lifecycle emissions and fuel use, airline revenues and costs, the short-, medium- and 
long-haul split of demand, average carbon prices, and the number of iterations to 
reach convergence. The code governing this output is in the file 
summaryOutput_v2.java.  

6.4 Plotting code 
 
AIM is also supplied with some simple R scripts to visualise outputs. To use these you will 
need to have the (free) software R installed (https://www.r-project.org). These scripts are in 
the directory plotting. In general they are intended to be used for making sure that the 
model is behaving as anticipated. They are supplied on an ‘as-is’ basis. Note that to use 
these scripts you will need to edit the text at the beginning of each to supply various details 
about the model run you want plotted. The scripts included are: 

• Check_baseyear_byairport.R – this plots base year segment and airport totals against 
database values, to check that the base year is well-established. 

• Check_baseyear_bycountry.R – this plots country-level international and domestic 
RPK on a departing flights basis. It should be noted that there are several ways 
country-level flights, passengers and emissions can be attributed. When checking 
against country-level data, care should be taken that it is not reported on a different 
basis (for example, ICAO reports RPK by airlines based in a given country). 

• Projected_system_chars.R – plots (for a grid of models or a single run) a set of 
projected system metrics including number of passengers, RPK, ticket price per RPK, 
total fleet, totals fuel use, and fuel lifecycle CO2 (note that under the accounting 
used in AIM, direct CO2 from drop-in biofuels is equal to that from fossil jet A).  

• Plot_fleet.R – this plots the fleet by technology group for a given run over time. Note 
that if you change the selection of technologies available you will need to edit this 
script to make sure it includes all of the available options.  

• Map_system.R – this generates a map of the global aviation system for a given year 
and model run. It requires some additional R packages to be installed (geosphere, 
rworldmap and colorRamps). Note that the pdf files this generates can be large (50 
MB or so), because they contain a vector representation of the entire yearly flight 
segment data. If you need a smaller file at a given resolution these pdfs should be 
converted to bitmap format (e.g. png). 



Output from each script is in the form of pdf files, written to the same directory as the 
plotting code. The output filenames include the run name in each case (for grid-based plots, 
the run name of the central run). 
 
6.5 Licensing 
 
AIM is distributed under a MIT license (https://opensource.org/licenses/MIT). This license 
allows use of the software under the following conditions: 
 
“Permission is hereby granted, free of charge, to any person obtaining a copy of this software 
and associated documentation files (the "Software"), to deal in the Software without 
restriction, including without limitation the rights to use, copy, modify, merge, publish, 
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the 
Software is furnished to do so, subject to the following conditions: 
 
The above copyright notice and this permission notice shall be included in all copies or 
substantial portions of the Software. 
 
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS 
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS 
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, 
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.” 
 
6.6 Contacts 
 
 
The AIM model was originally developed at Cambridge University and is now under active 
development in the Air Transportation Systems Lab at UCL (http://www.atslab.org). This 
webpage contains recent news and copies of/links to group publications. For further 
information about the Air Transportation Systems Lab, contact Andreas Schäfer 
(a.schafer@ucl.ac.uk). For further information about the AIM code in general, contact 
Lynnette Dray (l.dray@ucl.ac.uk). For more information about the population impacts 
model, contact Joanna Kuleszo (j.kulsezo@ucl.ac.uk). 
 
ACCLAIM also links with more detailed demand modelling currently being undertaken at 
Imperial College. For further information on this modelling, which is currently in progress, 
contact Aruna Sivakumar (a.sivakumar@imperial.ac.uk).  
 
The noise model was developed at Southampton University and is part of a range of noise 
models which account for different data requirements and modelling needs. For more 
information on this model, contact Rod Self (rhs@stoton.ac.uk) and Antonio Torija 
(A.J.Martinez@soton.ac.uk). 
 
The air quality model was developed at Cambridge University and further refined at MIT. 
For further information contact Steven Barrett (sbarrett@mit.edu). 



 
The regional economics model is under development at UCL, and is currently at the 
validation stage. For more information on this model,  contact Andreas Schäfer 
(a.schafer@ucl.ac.uk). 
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Appendix 1: OD demand model, main parameters 
 
For further discussion of these parameters, their sources and/or estimation, see Dray et al. 
(2014). Note that two income and two population terms are used in the demand equation 
(Section 3.1.1). Therefore the income and population elasticities are double the parameter 
used in the equation. Note also that the income elasticity terms are derived from Intervistas 
(2007) and are not part of the estimated model: the R2 values refer to the estimated model 
only. Generalised cost elasticities are typically slightly larger (more negative) than fare 
elasticities estimated on the same data. A further discussion of the differences is given in Dray 
et al. (2014).  
 
Route group Distance, 

statute miles 
Income 
elasticity  

Population 
elasticity 

Generalised 
cost elasticity 

R2 

Intra North America < 500 1.6 0.86 (0.04) -2.04 (0.08) 0.53 
500 - 1000 1.7 0.84 (0.02) -2.61 (0.07) 0.77 
> 1000 1.8 0.86 (0.02) -2.61 (0.06) 0.57 

Intra Europe < 500 1.3 0.75 (0.05) -1.24 (0.09) 0.47 
500 - 1000 1.4 0.85 (0.05) -1.27 (0.08) 0.47 
> 1000 1.5 0.75 (0.03) -1.08 (0.05) 0.47 

Intra Asia < 500  1.8 0.80 (0.06) -0.62 (0.16) 0.66 
500 – 1000 1.8 0.95 (0.06) -0.89 (0.13) 0.66 
> 1000 2.0 0.83 (0.05) -1.00 (0.11) 0.66 

Intra Central/ South 
America 

< 500 1.8 0.87 (0.05) -0.58 (0.19) 0.74 
500 – 1000 1.8 1.16 (0.10) -1.65 (0.43) 0.74 
> 1000 2.0 1.18 (0.10) -0.98 (0.26) 0.74 

Intra Africa All 1.8 1.18 (0.13) -0.98 (0.24) 0.70 



Intra Middle East All 1.5 0.43 (0.15) -1.60 (0.32) 0.75 
North Atlantic All 2.0 1.40 (0.09) -2.45 (0.18) 0.76 
South Atlantic All 2.2 0.99 (0.08) -1.93 (0.22) 0.76 
Pacific All 2.0 0.55 (0.09) -1.69 (0.24) 0.59 
North – Central/ South 
America 

All 2.0 0.80 (0.18) -1.37 (0.63) 0.71 

Europe – Middle East All 1.5 0.66 (0.11) -2.58 (0.17) 0.65 
Europe - Africa All 2.0 0.82 (0.10) -1.92 (0.13) 0.46 
Other routes All 2.0 0.78 (0.05) -0.42 (0.07) 0.45 

 
  



 

Appendix 2: Itinerary choice model, main parameters 
 
For further discussion of this model and the parameters included, see section 3.1.2. Paxorigin 
and Paxdest refer to the parameters for total airport passenger numbers in the previous year. 
Note that this model has been updated for version 9 of AIM; previously it used origin and 
destination airport fixed effects. Major route groups are shown below but parameters for all 
route groups can be found in the data file Elasticities.csv. 
 

Route 
group 

Intercept Fare  Time  
 

Frequency Nlegs Paxorigin Paxdest R2 

Intra 
North 
America 

0.86 
(0.004) 

-3.9e-03 
(5.9e-05) 

-5.5e-03 
(4.6e-05) 

0.74 
(0.004) 

-1.99 
(0.01) 

2.75e-08 
(4.1e-10) 

2.79e-08 
(4.1e-10) 

0.59 

Intra 
Europe 

0.76 
(0.006) 

-5.1e-03 
(8.6e-05) 

-2.8e-03 
(4.4e-05) 

0.84 
(0.004) 

-3.43 
(0.02) 

3.9e-08 
(8.8e-10) 

4.0e-08 
(9.0e-10) 

0.65 

Intra Asia 0.95 
(0.01) 

-2.1e-03 
(1.1e-04) 

-1.3e-03 
(4.7e-05) 

0.82 
(0.009) 

-3.51 
(0.02) 

3.5e-08 
(9.9e-10) 

3.6e-08 
(1.0e-09) 

0.58 

Intra 
South 
America 

0.81 
(0.02) 

-8.2e-03 
(4.1e-04) 

-1.5e-03 
(1.9e-04) 

0.88 (0.02) -2.50 
(0.06) 

1.2e-07 
(6.7e-09) 

1.1e-07 
(6.7e-09) 

0.60 

Intra 
Central 
America 

0.91 
(0.03) 

-2.2e-03 
(5.4e-04) 

-1.7e-03 
(1.2e-04) 

0.48 (0.03) -1.84 
(0.08) 

1.4e-07 
(1.1e-08) 

1.3e-07 
(1.1e-08) 

0.43 

Intra 
Middle 
East 

0.67 
(0.04) 

-3.4e-03 
(4.8e-04) 

-2.7e-03 
(2.4e-04) 

0.60 (0.03) -2.88 
(0.08) 

5.2e-08 
(4.6e-09) 

5.2e-08 
(4.5e-09) 

0.91 

Intra 
Africa 

0.97 
(0.03) 

-1.6e-03 
(1.5e-04) 

-3.6e-04 
(6.6e-05) 

0.53 (0.03) -1.30 
(0.07) 

3.9e-07 
(4.0e-08) 

3.5e-07 
(4.3e-08) 

0.85 

North 
America - 
Europe 

0.84 
(0.006) 

-8.5e-04 
(4.3e-05) 

-3.7e-03 
(4.8e-05) 

0.72 
(0.006) 

-2.24 
(0.02) 

8.2e-08 
(9.7e-10) 

8.1e-08 
(9.8e-10) 

0.91 

North 
America - 
Asia 

1.13 
(0.01) 

2.7e-04 
(4.6e-05) 

-2.6e-03 
(5.5e-05) 

0.78 (0.02) -2.47 
(0.03) 

2.4e-08 
(1.2e-09) 

2.2e-08 
(1.3e-09) 

0.80 

Europe - 
Asia 

1.00 
(0.01) 

-5.7e-04 
(3.6e-05) 

-2.3e-03 
(3.4e-05) 

0.79 
(0.009) 

-2.36 
(0.02) 

1.9e-08 
(9.2e-10) 

2.1e-08 
(9.6e-10) 

0.90 

North - 
South 
America 

0.76 
(0.01) 

-3.2e-04 
(5.2e-05) 

-3.4e-03 
(7.8e-05) 

0.76 (0.01) -1.81 
(0.03) 

8.7e-08 
(2.1e-09) 

8.4e-08 
(2.1e-09) 

0.92 

Europe - 
Middle 
East 

0.94 
(0.01) 

-2.2e-03 
(7.8e-05) 

-2.5e-03 
(6.5e-05) 

0.72 (0.09) -2.58 
(0.03) 

5.6e-08 
(1.8e-09) 

5.6e-08 
(1.8e-09) 

0.91 

Asia -
Middle 
East 

0.91 
(0.15) 

-1.8e-04 
(1.2e-04) 

-2.6e-03 
(7.0e-05) 

0.69 (0.17) -1.91 
(0.03) 

3.2e-08 
(2.0e-09) 

3.3e-08 
(1.9e-09) 

0.93 

Africa - 
Europe 

1.01 
(0.01) 

-7.9e-04 
(4.9e-05) 

-1.6e-03 
(3.7e-05) 

0.66 (0.01) -2.27 
(0.03) 

6.3e-08 
(2.3e-09) 

6.6e-08 
(2.5e-09) 

0.74 

South - 
Central 
America 

0.85 
(0.02) 

-7.25e-06 
(1.5e-04) 

-4.8e-03 
(1.3e-04) 

0.46 (0.02) -1.01 
(0.07) 

1.7e-07 
(9.5e-09) 

1.2e-07 
(9.2e-09) 

0.82 



Appendix 3: Fare model, main parameters 
As discussed in Section 3.1.3, the fare model has many input parameters. A full set of 
parameters for all world regions is given in the file Elasticities.csv. Only a selection of 
parameters for the largest route groups are given here. A more comprehensive discussion of 
the fare model, the meaning of the different parameters and its validation can be found in 
Wang et al (2017; 2018). Note that most variables are in log form, as shown in Section 3.1.3. 
 

Route 
group 

Intercept FuelCost/ 
pax  

Nonfuel 
Cost/flight 

Nonfuel 
cost/pax 

Frequency Pax CUI R2 

Intra 
North 
America 

2.08 
(0.07) 

0.21 
(0.004) 

0.14 
(0.004) 

0.13 
(0.01) 

-0.007 
(0.002) 

-0.06 
(0.002) 

0.01 
(0.002) 

0.55 

Intra 
Europe 

2.48 
(0.08) 

0.20 
(0.01) 

0.18  
(0.01) 

-0.03 
(0.01) 

0.064 
(0.003) 

-0.07 
(0.003) 

0.006 
(0.003) 

0.64 

Intra 
Asia 

2.37 
(0.16) 

0.38 
(0.01) 

0.18  
(0.01) 

0.11 
(0.02) 

-0.053 
(0.003) 

-0.001 
(0.003) 

0.07 
(0.004) 

0.88 

Intra 
South 
America 

-1.70 
(0.38) 

0.23 
(0.02) 

0.38  
(0.03) 

0.78 
(0.05) 

-0.022 
(0.01) 

-0.03 
(0.01) 

0.04 
(0.01) 

0.89 

Intra 
Central 
America 

1.63 
(0.31) 

0.098 
(0.02) 

0.16  
(0.02) 

0.26 
(0.04) 

0.018 
(0.01) 

-0.08 
(0.01) 

0.15 
(0.01) 

0.87 

Intra 
Middle 
East 

-6.73 
(1.09) 

0.093 
(0.05) 

0.60  
(0.06) 

1.51 
(0.14) 

0.095 
(0.02) 

-0.09 
(0.01) 

0.02 
(0.03) 

0.81 

Intra 
Africa 

1.55 
(0.59) 

0.22 
(0.02) 

0.29  
(0.02) 

0.17 
(0.04) 

-0.02 
(0.01) 

-0.07 
(0.01) 

0.10 
(0.02) 

0.91 

North 
America 
- Europe 

1.09 
(0.23) 

0.15 
(0.02) 

0.23  
(0.02) 

0.071 
(0.02) 

0.077 
(0.005) 

-0.07 
(0.005) 

0.03 
(0.01) 

0.55 

North 
America 
- Asia 

0.64 
(0.32) 

0.14 
(0.03) 

0.27  
(0.03) 

0.20 
(0.02) 

0.043 
(0.01) 

-0.07 
(0.004) 

0.14 
(0.02) 

0.62 

Europe - 
Asia 

3.31 
(0.19) 

0.32 
(0.02) 

0.13  
(0.02) 

0.10 
(0.01) 

0.081 
(0.004) 

-0.08 
(0.003) 

0.10 
(0.01) 

0.81 

North - 
South 
America 

2.00 
(0.44) 

0.25 
(0.03) 

0.24  
(0.04) 

-0.21 
(0.04) 

-0.003 
(0.01) 

-0.06 
(0.01) 

0.03 
(0.02) 

0.73 

Europe - 
Middle 
East 

0.82 
(0.34) 

0.09 
(0.03) 

0.35  
(0.03) 

0.051 
(0.03) 

0.13  
(0.01) 

-0.10 
(0.01) 

0.02 
(0.02) 

0.82 

Asia -
Middle 
East 

3.26 
(0.25) 

-0.03 
(0.02) 

0.30  
(0.02) 

-0.13 
(0.03) 

0.004 
(0.01) 

-0.05 
(0.004) 

0.02 
(0.01) 

0.88 

Africa - 
Europe 

3.63 
(0.28) 

0.16 
(0.02) 

0.27  
(0.02) 

0.075 
(0.02) 

0.066 
(0.007) 

-0.09 
(0.006) 

0.06 
(0.01) 

0.89 

Europe – 
South 
America 

1.06 
(0.46) 

0.37 
(0.04) 

0.19  
(0.04) 

0.097 
(0.02) 

0.13  
(0.01) 

-0.03 
(0.01) 

0.05 
(0.01) 

0.70 

  



Appendix 4: Aircraft size choice model, main parameters 
 
A full specification of the aircraft size choice model is given in Section 3.2.1. Choice 
parameters between the nine different aircraft size classes are estimate for travel within each 
world region and for travel between all world regions. A full set of parameters is given in the 
file AircraftData_params.csv. Example parameters for flights within Europe, within North 
America, within Asia and between regions are given below.   
 

Size 
class 

Intercept Distance  Origin 
hub 

Dest. 
hub 

Pax Load 
factor 

Origin 
runway 

Dest. 
runway 

NLCC HHI 

Intra-Europe 

2 -6.74 0.0028 0.43 0.42 7.3e-06 -0.35 0.00061 0.00062 0.02 0.67 
3 -10.50 0.0036 0.35 0.33 1.2e-05 3.64 0.00059 0.00058 -0.07 1.24 
4 -11.24 0.0046 0.48 0.46 1.3e-05 3.73 0.00041 0.00042 0.01 1.72 
5 -11.67 0.0048 0.22 0.19 1.5e-05 6.28 0.00016 0.00015 -0.06 1.91 
6 -14.59 0.0060 1.00 1.01 1.6e-05 0.37 5.8e-05 0.00011 0.12 1.87 
7 -15.41 0.0059 1.49 1.42 1.8e-05 0.45 0.00020 0.00022 -0.08 2.10 
8 -17.65 0.0061 0.41 0.38 1.8e-05 -1.21 0.00062 0.00062 -0.03 1.75 
9 -17.16 0.0054 -1.23 -1.33 1.9e-05 2.67 0.00058 0.00065 -0.61 -1.19 
Between all world regions 
2 -4.29 0.0008 -0.93 -0.91 8.6e-06 -0.45 0.00038 0.00033 0.10 1.43 
3 -4.82 0.0019 -0.75 -0.75 8.3e-06 0.93 0.00032 0.00023 -0.04 0.07 
4 -7.14 0.0022 -1.44 -1.46 1.2e-05 1.42 0.00055 0.00048 0.06 0.87 
5 -6.60 0.0024 -0.72 -0.76 1.3e-05 1.82 0.00030 0.00024 0.06 1.09 
6 -19.55 0.0034 -1.33 -1.23 1.4e-05 2.28 0.0014 0.0013 -0.08 1.05 
7 -17.01 0.0034 -0.97 -0.93 1.7e-05 1.86 0.0012 0.0011 -0.33 0.61 
8 -23.22 0.0037 -1.06 -1.08 1.9e-05 1.62 0.0016 0.0015 -0.04 1.71 
9 -27.95 0.0037 -0.59 -0.59 2.0e-05 2.10 0.0019 0.0018 -0.21 1.41 
Intra North America 
2 -1.71 0.0011 -0.073 -0.07 4.2e-06 -0.93 -4e-05 -5e-05 0.047 -0.35 
3 -4.37 0.0017 -0.23 -0.21 7.0e-06 -1.44 -1e-07 -1e-05 0.006 1.91 
4 -2.05 0.0022 -0.53 -0.52 8.1e-06 -6.64 0.00019 0.00017 -0.04 2.94 
5 -9.48 0.0026 -0.26 -0.25 8.1e-06 -0.73 0.00034 0.00033 0.07 3.82 
6 -21.35 0.0038 -1.03 -1.29 6.7e-06 4.94 0.00037 0.00044 0.40 2.80 
7 -19.14 0.0035 -0.44 -0.52 8.6e-06 1.28 0.00055 0.00059 0.11 5.14 
8 -23.55 0.0038 -0.94 -0.87 8.7e-06 -2.53 0.00081 0.00097 0.43 7.13 
9 -10.88 0.0053 -0.26 -0.20 1.4e-05 -3.71 -0.002 -0.002 0.03 2.81 
Intra Asia 
1 -7.20 0.0047 -0.43 -0.39 3.5e-06 1.27 0.00033 0.00034 -0.26 0.02 
2 -5.05 0.0056 0.36 0.33 3.5e-06 0.82 4.0e-05 6.5e-05 -0.10 -0.87 
3 -7.54 0.0057 0.79 0.74 3.6e-06 1.53 0.00044 0.00047 -0.00 -0.32 
4 -6.31 0.0057 0.57 0.53 4.1e-06 0.70 0.00046 0.00049 -0.12 -0.90 
5 -18.59 0.0068 0.81 0.80 4.3e-06 2.70 0.0012 0.0012 -0.00 -0.91 
6 -11.28 0.0066 1.80 1.76 4.5e-06 2.22 0.00038 0.00039 -0.16 -0.64 
7 -10.88 0.0068 2.00 1.94 4.6e-06 2.10 4.5e-05 6.8e-05 -0.03 -0.91 
8 -16.96 0.0069 1.59 1.61 4.8e-06 -0.84 0.0012 0.0012 -0.19 -5.09 

  



Appendix 5: Fleet turnover model parameters 
 
For further discussion of these parameters, see section 3.4.2, Dray (2013) and Morrell and 
Dray (2009). Parameters for retirement curves are given below. Note that average age at 
retirement (as given by the steepest part of the retirement curve) is given by -𝜑+/𝜑𝟐. 
 
Model 𝝋𝟏 𝝋𝟐 R2 
Narrowbody 5.10 (0.28) -0.184 (0.011) 0.88 
Widebody 6.64 (0.55) -0.230 (0.022) 0.95 
Regional Jet 3.98 (0.27) -0.135 (0.012) 0.73 
Turboprop 3.78 (0.21) -0.114 (0.008) 0.94 
Executive Jet 5.02 (0.36) -0.124 (0.013) 0.80 
< 100 seats (1960-64) 4.12 (0.58) -0.214 (0.028) 0.97 
< 100 seats (1965-71) 4.19 (0.48) -0.161 (0.019) 0.95 
< 100 seats (> 1972) 5.03 (0.41) -0.165 (0.018) 0.92 
100-190 seats (1960-64) 4.20 (0.55) -0.192 (0.024) 0.95 
100-190 seats (1965-71) 4.36 (0.52) -0.136 (0.018) 0.94 
100-190 seats (> 1972) 6.03 (0.52) -0.211 (0.022) 0.97 
190-300 seats 5.42 (0.47) -0.140 (0.018) 0.81 
> 300 seats 6.73 (0.55) -0.242 (0.022) 0.94 

 
Parameters for the freighter conversion model are given below. 
Model 𝝎𝟏 𝝎𝟐 R2 
Narrowbody -3.02 (0.18) 0.068 (0.007) 0.51 
Widebody -3.17 (0.11) 0.110 (0.011) 0.70 
Turboprop -1.53 (0.12) 0.048 (0.005) 0.39 
Executive Jet -5.80 (0.13) 0.129 (0.017) 0.65 
100-190 seats -3.01 (0.23) 0.037 (0.010) 0.65 
190-300 seats -4.80 (0.38) 0.165 (0.018) 0.71 
> 300 seats -2.27 (0.14) 0.079 (0.010) 0.55 

 
  



Appendix 6: Default technology assumptions 
 
The default technology parameters used in AIM are derived from Schäfer et al. (2014) and 
Dray et al. (2018). Both of these papers review the technologies, operational strategies and 
fuels which are projected to become available for aircraft over the next 50 years, including 
estimates of their costs, applicability and fuel use. The tables below give the assumptions 
used for: future generations of conventional technology aircraft; alternative aircraft 
technologies; retrofits to existing aircraft; and operational measures. Biofuel modelling is 
discussed in Appendix 7. Values in brackets give the range considered when modelling 
technology uncertainty. The technology data file is designed to be configurable to the study 
in question, so different versions may exist. 
 

Technology Size 
class 

 
Available from 

Capital cost, 
million 
US$(2015) 

Change in non-
fuel yearly cost, 
million US$ 
(2015) 

Change in 
block fuel 
use, % 

Next 
generation 
conventional 

1 2020 (2018-2025) 40.9 (35.7-46.1) -0.35 (- 0.3 - -
0.47) 

16 (15-21) 

2 2020 (2018-2025) 53.6 (46.8-60.4) -0.4 (-0.35 - -0.55) 16 (15-21) 
3 2019 (2018-2020) 69.6 (64.7-74.6) - 20 (15 – 22) 

4 2016 75.8 (70.4-81.3) - 20 (15 – 22) 
5 2018 (2017-2019) 88.9 (82.5-95.2) - 20 (15 – 22) 
6 
7 2020 (2018-2022) 211 (189 – 233) -0.026 12 (10 – 14) 
8 2020 (2018-2022) 251 (233-270) -0.35 (0 – 0.07) 21 (17.5 – 

23.7) 
9 2020 (2017-2022) 305 (284-323) -0.2 (0 – 0.4) 4 

Subsequent 
generation 
conventional 

1 2040 (2033-2050) 41 (36-46) -0.35 (- 0.3 - -
0.47) 

28 (25 – 32) 

2 2040 (2033-2050) 54 (47-60) -0.4 (-0.35 - -0.55) 28 (25 – 32) 
3 2039 (2031-2045) 75 (68 – 82) - 30 (26 – 34) 
4 2036 (2031-2041) 83 (75 – 90) - 30 (26 – 34) 
5 2038 (2032-2044) 97 (87 – 106) - 30 (26 – 34) 
6 2032 (2027-2037) 123 (114 – 132) - 14 (12 – 14) 
7 2040 (2033-2047) 211 (188 – 233) -0.026 24 (22 – 24) 
8 2040 (2032-2047) 251 (233 – 270) -0.35 (0 – 0.07) 31 (29 – 33) 
9 2042 (2039-2045) 306 (284 – 324) -0.2 (0 – 0.4) 17 (15 – 17) 

 
 
 
 
 
 
 



Technology Size 
class 

 
Available from 

Capital cost, 
million 
US$(2015) 

Change in non-
fuel yearly cost, 
million US$ 
(2015) 

Change in 
block fuel 
use, % 

Advanced 
Turboprop 

1 2030 (2025-2035) 22 (19 – 24) 1.7 (0.9 – 2.6) 43 (37 – 46) 
2 2030 (2025-2035) 28 (24 – 31) 1.7 (0.9 – 2.6) 43 (37 – 46) 

Optimised CRP 3 2035 (2030-2040) 73 (61 – 85) 0.4 (0.2 – 0.5) 41 (40 – 45) 
4 2035 (2030-2040) 98 (82 – 115) 0.4 (0.2 – 0.6) 41 (40 – 45) 
5 2035 (2030-2040) 99 (83 – 116) 0.4 (0.2 – 0.6) 41 (40 – 45) 

Blended- Wing 
Body 

6 2040 (2035-2045)  217 (180 – 289) -0.3 (-0.2 - -0.5) 30 (15 – 40) 
7 2040 (2035-2045) 233 (194 – 310) -0.3 (-0.2 - -0.5) 30 (15 – 40) 
8 2040 (2035-2045) 249 (207 – 332) -0.3 (-0.2 - -0.5) 30 (15 – 40) 
9 2040 (2035-2045) 364 (303 – 485) -0.3 (-0.2 - -0.5) 30 (15 – 40) 

 
 
 
 

Technology Size 
class 

 
Available 
from 

Capital cost, 
million 
US$(2015) 

Change in non-fuel 
yearly cost, million 
US$ (2015) 

Change in fuel 
use, % 

Blended 
winglets 

3 – 7 2015 0.85 – 1.9 - 3 (2 – 4) 

Surface Polish 1 – 7 2015 0.03 – 0.13 0.03 – 0.16 1 (0.5 – 1.5) 
Carbon Brakes 1 – 9 2015 - 0.015 – 0.045  0.15 (0.1 – 0.2) 

Engine 
Upgrade Kit 

1 – 7 2015 0.5 – 1.8 - 1 (0.5 – 1.5) 

Re-engining 1 – 7 2015 7.1 – 16.6 - 12.5 (10 – 15) 

Electric Taxi 1 – 9 2018 0.3 – 4 - 2.8 (1.8 -3.8) 

Cabin Weight 
Reduction 

1 – 9 2015 0.2 – 2.3 - 1.2 (1.2 – 2.1) 

 
 
 
 
 
 
  



 
 
 
 
 
 
 
 

Measure Size 
class 

 
Available 
from 

Cost, million 
US$(2015) 

Change in fuel use, %, 
relevant flight phase 

Surface congestion 
management 

1 – 9 2015 0.015 – 0.06 15 (10 – 20) 

Single engine taxi 1 – 9 2015 0 – 0.06 30 (20 – 40) 
Optimize departures 1 – 9 2015 0.2 – 0.6 20 (10 – 30) 
Reduce cruise inefficiency 1 – 9 2015 0.07 – 0.13 5.5 (2.8 – 8) 
Optimize approach 1 – 9 2015 0.2 – 0.6 40 (15 – 50) 
Reduced fuel reserves 1 – 9 2015 0 – 0.5 0.01 – 0.4 
Reduced tankering 1 – 5 2015 0 0.26 (0.34 – 0.27) 
Increased engine maintenance 1 – 9 2015 0.001 – 0.002 2.4 (1 – 4)  
Increased aerodynamic 
maintenance 

1 – 9 2015 0.001 – 0.002 1 (0.2 – 1.5)  

Engine wash 1 – 9 2015 -0.1 – 0.09 0.75 (0.25 – 1) 
Increased LF / reduced 
frequency 

1 – 5 2015 0.2 – 7.6 0g 

Increased turboprop use 1 – 2 2015 2.6 30 (25 – 32) 
 
  



Appendix 7: Biofuel modelling 
 
Biofuels can be included in AIM in several different ways, depending on the information 
available.  The type of biofuel scenario that is run is governed by the input variable 
BiofuelScenario in AIMRunParameters.csv. These scenarios are detailed in the input file 
BioFuelCharacteristics.csv, which gives characteristics such as the year of initial availability, 
the time to full production, relative fuel lifecycle emissions in comparison to fossil Jet A and 
the type of cost modelling. The cost modelling parameter can take values as follows: 
 

• CostModelType = 0. In this case, a price threshold is also set in 
BioFuelCharacteristics.csv. If the price of fossil Jet A is below this threshold, the biofuel 
price is held constant at the threshold value. If the price of fossil Jet A rises above the 
threshold, the biofuel price is modelled as being infinitesimally below the fossil Jet A 
price (including typical carbon price). This accounts for the profit-maximising 
behaviour of fuel producers. In this case the global availability of biofuel is limited only 
by the maximum blend variable (‘MaxBiofuelBlend’ in AIMRunParameters.csv). 

• CostModelType = 2. In this case, the price is assumed to always be infinitesimally 
below the price of fossil Jet A (including carbon price). This explores the case in which 
biofuel adoption is as high as theoretically possible, but no cost data is available. 
Because the price is close to that of Jet A, no system changes due to increased or 
reduced airline costs are modelled. As above, supply is limited only by the maximum 
blend with fossil Jet A allowed.  

• CostModelType = 3. In this case, a cost curve model is used to estimate costs and 
availability on a regional basis. Cost curves are derived from Hoogwijk et al. (2009), 
adjusted as in Searle & Malins (2015). The variation over time is scaled as for North 
America in DoE (2011). These cost curves give the cost of biomass; to get the cost of 
fuel, transport, plant investment and operations and maintenance costs are also 
needed. Here we assume as a central case $3.6/gallon in 2020 (year 2015 US dollars), 
falling to $1.8 ($1.3-$2.3) per gallon in 2050. Example cost curves for the central case 
over time are given in Figure 29. It is assumed that aviation has priority access to 
biofuels, i.e. we do not consider how much of the biomass available may be used by 
other sectors. However, uptake is still limited by the maximum blend variable.  This is 
the model used for biofuel cost and availability in Dray et al. (2018). 

Various assumptions can be made for the maximum biofuel blend. It can be used to limit 
uptake based on biomass supply assumptions and the use of biomass by other sectors (in 
particularly electricity generation). It can also be used to reflect current technical limits on 
biofuel blends. As discussed in Zschoke (2012), certified biofuels are currently limited to a 
50% blend with Jet A to maintain a high enough aromatic content in the blended fuel for 
continued functioning of seals. Therefore under current regulation MaxBiofuelBlend should 
be no higher than 0.5. However, this constraint could be relatively easily lifted in future by 
adding aromatics to higher blends. Note that within the code the proportion of biofuel use 
for a given segment is the product of two factors: the available blend (e.g. bioBlend), which is 
limited by certification requirements and supply, and the uptake of fuel at that blend, which 
is affected by costs relative to Jet A and the uptake of other technologies that are 
incompatible with biofuels.  
 



All fuels are assumed to be drop-in biofuels and typically a cellulosic biomass feedstock is 
assumed, as this has favourable cost and scalability characteristics and relatively little impact 
on food production. For further discussion of the biofuel modelling, see Dray et al. (2018). 
Note that where supply estimates in GJ or EJ are given, these refer to final totals after 
accounting for conversion losses during the fuel production process (see e.g. Searle & Malins, 
2015).  
 

 

Figure 29. Biofuel cost curves used in the current version of AIM: central lens, North America, 
Europe and Asia/Pacific. 
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Appendix 8: Adding new technologies 
 
Data on technology characteristics (including new aircraft types, retrofits and some 
operational measures) is stored in the input file TechnologyMeasureData.csv. New 
technologies can be simulated either by editing existing technologies in the file or by adding 
extra entries at the bottom. Note that if you change the number of technologies in this file 
you also need to: change the variable numMeasures in 
DimensionsAndSolutionParameters.csv; and add an extra column for compatibility with 
other measures in TechnologyMeasureData.csv. 
 
The variables needed per line in the technology file are as follows (most important ones 
bolded): 

• MeasureName: identifying name for the technology (string, e.g. “ElectricAircraft”) 
• Index: identifying number for the technology (int, e.g. 1) 
• Level: gives whether these characteristics are central values (1) or reflect the 

pessimistic or optimistic lens assumptions (2 or 0). 
• AircraftSize: applicable aircraft size class (0-8). 
• RunMeasure: 1 to run, 0 to exclude. This allows runs with different technology 

availability (as well as excluding size class/technology combinations that are not 
compatible). 

• StartYear: the year the technology first becomes available, for a given lens, size class 
and technology (e.g. 2018). 

• EndYear: The year the technology stops becoming available (e.g. because a given 
retrofit is assumed to be standard on new aircraft models). 

• ApplicabilityForRetrofit: gives the proportion of the fleet which are assumed to be 
able to retrofit this option (0 if not a retrofit, 0.2 if 20% of existing fleet are eligible). 
Applicability may be limited by, for example, this measure already being available on 
some of the fleet. 

• ApplicabilityForNew: gives the proportion of new aircraft in this size class which 
could use this option (e.g. 1 for 100%). Note that applicability limits due to limited 
range are dealt with separately and should not be included here.  

• ApplicabilityTrend: gives the time period over which the S-curve model for uptake 
should be applied for technologies that are sufficiently different from current ones 
that there is likely to be a distinction between early and late adopters (see e.g. Kar, 
Bonnefoy & Hansman, 2010). E.g. 10 for 10 years.  

• AgeThreshold: if this technology can only be applied to aircraft above a certain age 
(e.g. if it is to mitigate age-based deterioration) then this gives the threshold in years 
(e.g. 20 for 20 years). 

• EnergyGate, EnergyTaxiOut, EnergyTakeoff etc. These variables give the change in 
energy use per flight phase from the reference aircraft without this technology in 
each size class. For example, EnergyTakeoff = -0.3 means that this technology uses 
30% less energy than the reference aircraft in taking off (typically this also means 
30% less fuel, but it is encoded as energy use because of aircraft that use different 
energy carriers). Note that for climbout, cruise and approach values are specified 
at two reference stage lengths, to capture technologies where benefits are 
dependent on stage length.   



• EINOxGate, EINOxTaxiOut, EINOx takeoff, etc. These variables capture how NOx 
emission index (i.e. NOx emitted per amount of fuel used) changes per phase when 
using this technology, relative to the reference aircraft, when this technology is 
used. E.g. -0.3 for 30% decrease. Note that this is often assumed 0 (i.e. NOx 
decreases because less fuel is used but emission index stays the same). 

• EIPMGate, EIPMTaxiOut, EIPM takeoff, etc. These variables capture how PM 
emission index changes for the new technology relative to the reference aircraft, 
similarly to the NOx variables described above.  

• UpfrontCosts: For new aircraft models, the estimated purchase price of the aircraft 
(including typical discounts from list price; note these may be 30-50% or more). For 
other technologies, the initial implementation cost. Year 2015 US dollars.  

• YearlyCostsVol, YearlyCostsRoute, YearlyCostsLand, YearlyCostsMaint, 
YearlyCostsCrew: change in yearly (non-fuel/carbon, non-finance) costs by category 
when using this technology, relative to the reference aircraft without the technology 
installed. Year 2015 US dollars.  

• CruiseSpeed: Indicates any change in cruise speed from the reference aircraft that 
might be expected using this technology (e.g. -0.1 = 10% decrease). 

• AssessmentMethodology:  Set to 1 to assess using NPV (e.g. for new aircraft 
technologies). Set to 0 to assess using payback period (e.g. retrofits, drop-in fuels). 
Set to 2 to automatically assume adopted with no change in non-fuel costs (e.g. if 
you do not know what the costs of the technology are but want to assess its 
benefits). 

• Reversible: 1 if this technology can be easily stopped if no longer cost-effective (e.g. 
operational measures), 0 otherwise.  

• AgeDependent: 1 to flag measures where the benefits change depending on aircraft 
age (e.g. measures to mitigate deterioration over time), 0 otherwise.  

• DeltaLiquidFuelPrice: multiplicative factor for fuel price when using this technology. 
This applies only to stopping tankering, otherwise this should be set to 1.  

• Flags: this variable flags particular types of technology measures so that they can be 
turned on or off together. For example Flags = 5 for ATM-based measures and 6 for 
alternative fuels.  

• ForceBest: If applying a policy where airlines are mandated to use a particular ‘best-
practice’ technology, this can be set to 1 for those technologies. Otherwise 0. 

• LoadFactorImpact: Indicates how this measure affects average load factor (e.g. 0.05 
for 5% increase, 0 for no change). 

• AircraftSizeImpact: Indicates how this measure affects number of seats per size class 
(e.g. 0.05 for 5% increase).   

• PassOnFuelBurn: Indicates whether the stock model should pass on calculated fuel 
burn to the LTO ops model. For example, if the main benefits come from a change in 
flight frequency, passing on fuel burn changes would lead to double-counting. 1 to 
pass on, 0 to not pass on. 

• DCheckInstallOnly: 1 indicates a (retrofit) measure which would typically only be 
installed at a major maintainance check (roughly one opportunity every 6 years). 0 
otherwise.  



• ChangeInTurnaroundTime: absolute change in minimum turnaround time from using 
the measure, in minutes. E.g. 10 if minimum turnaround time would increase by 10 
minutes. 

• CompatibleWithMeasure0, CompatibleWithMeasure1, etc.: These variables capture 
whether this measure can be applied at the same time as the other measures in the 
file. Therefore there needs to be one column per measure. For example, single 
engine taxi is not compatible with electric taxi, and different new aircraft models are 
not compatible with each other. 1 if compatible, 0 if not.  

•  MinimumRunwayLength: Minimum runway length (m) needed to use this 
technology. This only needs to be set if the technology needs a substantially longer 
runway than the reference aircraft to take off. Otherwise set to 0.  

• MaximumStageLengthIntroYear_nm: Maximum stage length in the technology 
introduction year, for technologies which have a range limitation. Nautical miles. 
Only needs to be set of the range limitation is substantially different to the reference 
aircraft, otherwise use a dummy large value (e.g. 100,000). 

• MaximumStageLengthTimestep_years: For technologies with a range limitation, 
gives the timestep over which that range limitation might improve (e.g. 3 years). This 
might apply in the case of electric aircraft where battery technologies are continually 
improving. Otherwise set to dummy large value (e.g. 100). 

• MaximumStageLengthPerStep_Increase: For technologies with a range limitation, 
gives the likely improvement in maximum range (in nautical miles) per timestep (e.g. 
90). Otherwise set to 0.  

Note that each combination of measure, level and size class has its own line in the file 
regardless of whether or not the measure can be used at that size class – if it cannot be 
used then runMeasure is always 0 and the remainder of the parameters take dummy values.  
 
In interpreting outcomes, several features are worth noting. Total global emissions are 
aggegates over all aircraft types, sizes, stage lengths and flight phases. For example, 
technologies which are substantially different from existing aircraft models are assumed to 
have an S-curve type adoption pattern over a user-specified number of years to account for 
early/late adopters (see above), and fleet turnover timescales can be of order 30 years. This 
means that most radical new technologies will only have small impacts in the first few years 
after they become available. Assessing the potential of a new aircraft model may require 
modelling at least 10-20 years beyond its introduction date. Similarly, a technology which is 
highly successful in reducing emissions for a particular aircraft size class or distance may 
have a minor impact on global emissions if there are not also corresponding emissions 
reductions for other size classes and distances. Figure 30 shows how year-2015 flight 
departures, LTO NOx, RPK and fuel use vary with distance flown. Around half of flights are 
under 1,000 km and around half of fuel use is on flights under 3,000 km. Thus (broadly) 
emissions are divided into roughly equal halves shorter-haul/single aisle type aircraft and 
longer-haul/twin-aisle type aircraft. A new single-aisle design in multiple sizes which halved 
fuel use for comparable missions would therefore lead roughly to a 25% decrease in 
emissions if fully adopted. Technologies which are specifically range-limited will also only be 
able to realise benefits up to the proportion of global flights under that range (absent 
substantial changes in routing/hubbing structure).  



 
Figure 30. Global cumulative distribution of year-2015 scheduled flight departures, LTO NOx, 
RPK and fuel use by flight distance. 

Similarly, emissions are aggregates over all flight phases. Figure 31 shows the proportion of 
total fuel attributed to different flight phases for different aircraft size classes and stage 
lengths, for an assumed 0.8 passenger load factor. ‘Other’ includes takeoff, landing, taxi and 
holding emissions. Although cruise is usually (apart from very short-haul flights) the highest-
emissions phase, for a typical single-aisle flight the aggregate of other flight phase emissions 
is as large or larger. This means that technologies which are very successful at reducing cruise 
emissions, but less successful at addressing emissions in other phases, may seem to 
underperform. For example, a single-aisle technology which reduces cruise emissions by 40% 
but other phase emissions by only 20% will actually only deliver reductions of around 30% in 
practice. 

Finally, as discussed above, the benefits of all alternative technologies are measured against 
a year-2015 typical technology baseline (e.g. the A320 rather than A320neo). The newest 
models of conventional aircraft already use 15-20% less fuel than this baseline, and (as 
discussed in Appendix 6 and Dray et al. (2018)), subsequent generations of conventional-
technology aircraft will improve on this further. Thus the difference between radical changes 
in technology and the best-available conventional technology at the time may be smaller than 
anticipated.  
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Figure 31.Distribution of fuel use to different flight phases by stage length for 0.8 assumed 
passenger load factor. 

These effects together can often make radical new technologies appear to underperform. If 
a technology does not seem to be producing the benefits expected, it can be worth checking 
(in the output FleetData file) what proportion of the fleet is the new technology in each size 
class; and (in the input TechnologyMeasureData file), which size classes the technology is 
applicable to and how benefits differ per flight phase.  
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